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Kernreaktionen in Astrophysikalischen Plasmen

Der langsame Neutroneneinfangprozess während der Nukleosynthese bewirkt oftmals,
dass Kerne, die einem Neutroneneinfang oder Beta-Zerfall unterliegen, nicht nur in
ihren Grundzuständen, sondern auch in langlebigen angeregten Zuständen, in sogenan-
nten Isomeren, vorzufinden sind. Solche Isomere können außerhalb des thermischen
Gleichgewichtes mit den Grundzuständen der Kerne sein, und müssen deshalb geson-
dert berücksichtigt werden. In dieser Arbeit untersuchen wir theoretisch die Abregung
solcher Isomere infolge von Kernanregung durch Elektroneneinfang (NEEC) unter den
Bedingungen des langsamen Neutroneneinfanges in dichten, stellaren Plasmen. Auf-
grund der hohen Ladungszustände in diesen Plasmen ist NEEC nicht notwendiger-
weise ausbalanciert mit ihrem inversen Prozess, der inneren Konversion, weshalb die
Reaktionsraten getrennt betrachtet werden können. Wir analysieren die Fälle 58mCo,
99mTc, 121mSn, 121mSb und 152mEu, und vergleichen die NEEC Abregungsraten mit
den relevanten Beta- und Gamma-Zerfallsraten der Isomere. Die Ergebnisse für 58mCo,
121mSb und 152mEu zeigen, dass NEEC als wichtiger Abregungskanal der Isomere in
astrophysikalischen Plasmen betrachtet werden sollte.

Nuclear Reactions in Astrophysical Plasmas

In the process of slow neutron capture nucleosynthesis, one often has to take into
account that nuclei undergoing neutron capture and beta decay may not be only in
their ground states, but also in long-lived excited states, known as nuclear isomers.
Such isomers might not be thermally equilibrated with the nuclear ground states. In
this thesis, we theoretically investigate the efficiency of nuclear excitation by electron
capture (NEEC) to deplete such isomeric states in dense stellar plasmas under the s-
process conditions. Due to the high charge states available in such plasmas, NEEC is
not always accompanied by its detailed-balance counterpart, the inverse process internal
conversion, and reaction rates can be considered separately. We investigate the cases
of 58mCo, 99mTc, 121mSn, 121mSb and 152mEu and compare the NEEC depletion rates
with relevant beta and gamma decay rates of the isomeric states. The results for 58mCo,
121mSb and 152mEu show that NEEC should be considered as relevant isomer depletion
channel in astrophysical plasmas.
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Chapter 1

Introduction

The origin of matter has been one of the most fundamental questions throughout
human history. The universe was started from one tremendous explosive event 13.7
billion years ago—the Big Bang. The universe was originated from a very small point
which had unimaginably high density of energy. Approximately 10−43 second after the
Big Bang, the universe was a region of only 10−35 m and had a temperature of over
1032 K. As the universe cooled and expanded, conditions became suitable to give rise
to the building blocks of matter—the quarks and electrons which all matter is made
of. Particles and antiparticles were being created from energy and they were also being
combined together to annihilate and release energy. About 10−5 second after the Big
Bang at temperature of about 1013 K, quarks aggregated and started to produce protons
and neutrons. The lower temperature allows quark and anti-quark pairs to combine
into mesons. At this moment, the formation of atom was not yet possible, because the
produced particles were still too energetic to be stabilised. The neutrons were being
created and destroyed by the reaction between protons and electrons. The protons and
electrons were being combined to form neutrons and neutrons were decaying into protons
and electrons:

p+ + e− 
 n+ νe,

n
 p+ + e− + νe.
(1.1)

From around 1 second to 3 minutes after the Big Bang, the temperature is estimated to
have decreased from 1010 to 109 K. At this temperature, neutrons and protons collisions
were finally resulting in the formation of nuclei. The first atomic nuclei formed. The
proton itself was the nucleus of hydrogen (H). The neutron and the proton combined to
form nucleus of deuterium (D). The formed Deuterium nuclei collided to produce nuclei
of tritium (T) and helium (He):

p+ + n→ D + γ,

D + p+ →3 He + γ,

D + D→ T + p+,

T + D→4 He + n.

(1.2)

On very rare occasions, the collisions of D and He produced lithium (Li) and beryllium
(Be), respectively. This Big Bang nucleosynthesis is responsible for production of the
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lightest primordial elements from 1H to 7Li. The produced elements precede star forma-
tion and stellar nucleosynthesis. No nucleosynthesis can proceed beyond Li until stars
form.
The universe continued to expand and cool, the atoms of gases collected to form clouds

of H gas. There were no stars or planets yet. About 108 years after the Big Bang, these
massive gas clouds were contracting due to their own gravity and this gravity increased
pressure and temperature. At the center of these gases, the pressure and temperature
were so high that atoms did not exist. Rather, the electrons were stripped from the
atoms and the electrons and nuclei were moving randomly with very high speed in the
core. Once the temperature reached ∼ 107 K, the H nuclei in the core were energetic
enough to collide and fuse to form He nuclei and release a huge amount of energy. The
released energy from the core counteracted the gravity. If the outward pressure of fusion
energy was balanced by the inward pull of gravity, the gas clouds reached equilibrium
and the star formed.
Stars are powered by nuclear fusion, in which light nuclei combine to make heavier

nuclei. For most of a star’s life, the main fusion process is H burning to form He [1].
Once the H in the core of a star is used up, and if the star is massive enough, it contracts,
heats up and starts to fuse He to carbon (C). Similarly, after the main source of He in the
core is exhausted, one can combine elements to get heavier nuclei. However, the amount
of energy per mass released by fusion reaction drops drastically after H→He reaction.
After one gets up to iron (Fe) and nickel (Ni), further fusion require an energy input than
generating output. Indeed, the stellar nucleosynthesis cannot produce nuclei beyond Fe
and Ni.
Further element production proceeds via slow, rapid neutron capture (s- and r-process)

and proton capture (p-process). The s- and r- processes take place through neutron
captures and subsequent beta-decays. They were first identified in 1957 in a pioneering
work by E. Burbidge, G. Burbidge, Fowler, and Hoyle (shortly, B2FH) [2]. About half of
the abundances beyond Fe in the solar system are formed by the s-process, the other half
by the r-process. A small contribution is given by the p-process. Isotopes involved in s-
process are often sufficiently stable and long-lived to be studied in the laboratory. For this
reason, physical properties of s-process are relatively well-known thanks to astronomical
observations of stars and measurement of their element abundances [3].
From the revealed physical sites of the s-process, it turns out that in the stellar envi-

ronment, considering nuclei only in their ground states is not sufficient. Due to the hot
plasma temperature, excited nuclear states can be significantly populated [4–7], typically
according to a Maxwell-Boltzmann distribution. However, a special role is played by nu-
clear isomers, i.e., long-lived excited nuclear states [8, 9]. These can be directly populated
by gamma decay cascades following neutron capture [10, 11] and can have beta decay
rates very different from the ones of the nuclear ground states [12, 13]. Due to their long
lifetime, equilibration with the ground state and the other non-isomeric excited states
is not always possible [14]. In this case, one needs to include the isomers as additional
nuclear species in the nucleosynthesis nuclear reaction networks under stellar conditions.
A so-far not so well investigated coupling between the ground and isomeric nuclear
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states can occur via nuclear excitation by electron capture (NEEC). In this process,
a free electron is recombined into the bound state of a highly-charged ion with the
simultaneous excitation of the nucleus [15–20]. NEEC is the time-reversed process of
internal conversion (IC), in which the nucleus de-excites by kicking out a bound electron.
Although one would therefore expect that the NEEC and IC rates are always connected
in the astrophysical plasma via the principle of detailed balance, IC might be hindered
by channel closure due to fast collisional and photo-ionisation in the plasma.
In this work, we investigate the efficiency of depleting the isomeric state via NEEC in

the dense astrophysical plasmas. We consider here a selection of isomers: 58mCo, 99mTc,
121mSn, 121mSb and 152mEu. For the NEEC calculations in the plasma environment,
we take into account: (i) details about conditions and fluxes, plasma compositions as
for s-process; (ii) the specific charge states under these conditions, and calculate total
depletion rates for a number of possible recombination channels.
Our calculations are founded on the theoretical treatment of NEEC developed in Ref.

[16]. With the local thermodynamic equilibrium (LTE) assumption, the degree of ion-
isation of ions is computed by solving the Saha equation [21]. Combining the NEEC
transition rates, degree of ionisation and the electron flux from the Fermi-Dirac integral,
the NEEC reaction rate in the plasma is obtained. The obtained reaction rates are com-
pared with beta decay rates of the isomeric states. As a result, we find high reaction rates
for 58mCo, 121mSb, and 152mEu; and rather low rates for 99mTc and 121mSn. Based on
the promising examples of 58mCo, 121mSb, and 152mEu, we conclude that NEEC should
be considered as relevant isomer depletion channel in astrophysical plasmas.
This thesis is structured as follows: In Chapter 2, we introduce the ceoncept of neu-

tron capture nucleosynthesis. Various processes involved in nucleosynthesis scenarios are
discussed first and the physical sites and conditions of neutron capture processes are
identified. In Chapter 3, local thermodynamic equilibrium (LTE) is discussed. Based on
the LTE assumption, the Saha ionisation is introduced to describe the charge state of
ions in the plasma. To examine the equilibration of nuclear states, two-level and three-
level system formalisms are discussed. Chapter 4 is devoted to the theoretical treatment
of nuclear excitation by electron capture. Numerical results are presented and discussed
in Chapter 5. Finally, the work concludes with a summary and outlook.

3



Chapter 2

Neutron Capture Nucleosynthesis

2.1 Nucleosynthesis

In the first three minutes after the Big Bang, most of the hydrogen (H) and helium (He)
and a small amount of lithium (Li) were produced. Two more light elements, beryllium
(Be) and boron (B) were synthesised in interstellar space by collisions between cosmic
rays and gas nuclei [1]. The process that happened in the first three minutes after the
Big Bang is called Big Bang Nucleosynthesis (BBN).
While H and He are the oldest elements in our Universe, and more than ninety percent

of the Universe is made up of them, simply having H and He does not allow for nature
to create complex organic matter and life. To do this, heavier elements are needed, for
instance, carbon (C), oxygen (O) and nitrogen (N) [22]. Heavier elements from carbon to
iron are produced by charged-particle fusion reactions in stars during stellar evolution.
This process is called stellar nucleosynthesis. H, He and the traces of Li, Be, and B
produced in the BBN have served as the source elements for the formation of stars long
after the BBN stopped. Fusion reactions in stars are then responsible for the formation
of heavier elements. Fusion reactions are exothermic processes and the released energies
are used to power stars and overcome gravitational contraction. Most of a star’s life is
devoted to the fusion process where H is burned to form He.
The binding energy per nucleon increases with nuclear mass up to 56Fe, the most

tightly bound of all nuclei. The production of any heavier elements by direct fusion
is endothermic. Moreover, as the proton number increases, the Coulomb barrier in-
creases. For sufficiently high proton numbers, the Coulomb barrier between protons is
too strong that two positively charged nuclei cannot overcome it and reach separation
distances where strong force dominates. Therefore, the isotopes of elements beyond Fe
are produced mostly by neutron-capture processes (n-capture) but not by nuclear fusions.
These processes are recognised as neutron capture nucleosynthesis and their products are
referred to as n-capture elements [1].
The n-capture process iterates a two-step sequence : (i) a seed nucleus captures free

neutrons until it forms an unstable isotope; (ii) the unstable isotope increases the number
of nuclear protons (Z) by one (Z+1) via beta decay and creates a new element. The
resulting nucleus is heavier than the seed nucleus and has less binding energy per nucleon,
but the additional binding of the free neutrons makes the process exothermic [23]. Sources
of free neutrons are available from interior fusion layers during late quiescent evolutionary
stages of stars over a wide mass range [24].
Mainly, there are two different types of n-capture processes for astrophysical nucle-
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Figure 2.1: Chart of nuclides. The diagram plots the number of protons (Z) against the
number of neutrons (N) for the stable and neutron-rich unstable nuclides.
Stable isotopes against beta decay are indicated by black and magenta dots,
and they form the valley of stability that runs along the top edge of the band.
The jagged black line is the limit of laboratory information. The jagged ma-
genta line shows a typical path of rapid neutron captures (r-process). Such
paths tend to turn vertical at the double vertical lines that mark neutron
numbers corresponding to closed neutron shells. The horizontal double lines
indicate closed proton shells. Coloured bands describe the measured or pre-
dicted beta decay lifetimes τβ (taken from Ref. [1]).

osynthesis [2]. These two processes are called the slow (s) and rapid (r) neutron capture
processes. A process is determined to be slow or rapid by comparing the time scale of
n-capture and beta decay. After a nucleus has captured a neutron, the time scale τn for
it to capture an extra neutron can be competing with the time scale τβ for it to undergo
beta decay. While τβ is equivalent to the beta decay life time, τn highly depends on the
neutron flux of the environment.
In the s-process, τn is much longer than τβ , i.e., τn � τβ . Indeed, a single n-capture

is generally followed by beta decay. On the other hand, the path charted by successive
n-captures is close to the valley of β-stability as shown in Fig. 2.1. From the figure, one
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can clearly see that for a given proton number, the beta decay lifetime is decreasing as
the neutron number is increasing.
In the r-process, τβ is required to be much longer than τn, i.e., τβ � τn. This condition

is achieved in extremely neutron-rich environments, as τn is inversely proportional to the
neutron density of the environment [25]. Such high neutron fluxes are available, for
example, in a supernova explosion. In this case, the nuclei capture neutrons to become
very neutron-rich and unstable isotopes which are far from the β-stable valley. Once the
neutron flux is exhausted, the unstable nuclei will undergo a sequence of beta-decays
until the first stable nucleus is formed.
However, for some mass numbers, two (or even three) stable nuclei exist. The parent

nucleus which undergoes the r-process will stop in the nucleus which has the larger
neutron number; therefore, for a given mass number, the nucleus with a smaller neutron
number will not be created by the r-process, rather it will be produced from the s-
process. Such nuclei are called s-process only nuclei. In the same manner, the neutron-
rich nuclei produced from r-process are called r-process only nuclei and their abundances
are purely produced by the r-process. S-process only and r-process only nuclei play
an important role, as they have a unique contribution in the nucleogenesis process [25].
While the specific physical conditions and nuclear properties of the s-process are well-
known, physical properties of r-process, especially its astrophysical sites, have not yet
been clearly identified [1]. In addition, a detailed analysis of Fig. 2.1 suggested that the
most proton-rich nuclei cannot be produced by n-capture processes. The stable isotopes
of proton-rich nuclei between 74Se and 196Hg have 10 to 100 times less abundances than
the abundances of s- and r-process nuclei. These nuclei are assumed to be produced
from the p-process, either by proton captures (p,γ) or photodisintegration reactions [26].
Unfortunately, p-process produced nuclides (p-nuclei) are not well identified and their
origin is still not completely understood. In Subsec. 2.1.1 and 2.1.2, some properties of
the s- and r- processes will be discussed in detail, following [1, 23] and the Chapter 5 of
Ref. [25].

2.1.1 The s-process

The essential features of the slow neutron capture process were already investigated
by B2FH [2, 27]. The He-burning layers of low-mass asymptotic giant branch (AGB)
stars (produce main s components) and the He- and C-burning phases of massive stars
(produce weak s components) are the astrophysical sites of the s-process [28]. In the
s-process, heavy nuclei are formed by a sequence of n-captures and beta decays, mostly
processing the elements below and near the iron peak into a wide range of nuclei extending
up to Pb and Bi [25]. With the s-process fulfilling the condition that τβ � τn, the s-
process path runs along the valley of beta-stability in the nuclear chart. Therefore,
isotopes involved in s-process nucleosynthesis are sufficiently long lived to be studied in
the laboratory. This makes the s-process the best understood process among different
processes in the nucleosynthesis. The involved n-capture cross sections and half-lives can
be determined in the laboratory. The remained uncertainties in s-process predictions are
related to the favoured stellar sites [29].
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Using the s-process abundances at the branching points and the required nuclear input
(such as nuclear masses, nuclear half-lives and neutron cross sections), we can obtain the
neutron density and temperature of the stellar environment where the s-process takes
place. The branching points occur on the s-process path if τβ and τn are comparable. This
means that the s-process path can proceed both way, by n-capture and by beta decay. The
relative matter flow at the branching point depends on the ratio of n-capture and β- half-
lives. As the n-capture half-life depends on the neutron density, the branching enables
us to determine the neutron density once we know the β-half-lives and n-capture cross
sections. For instance, in the A =147-149 mass region shown in Fig. 2.2, the branching

  

Figure 2.2: S-process reaction path in the Nd-Pm-Sm region with the branchings at A
= 147, 148, and 149. Particularly, 148Sm and 150Sm are shielded against the
r-process beta decays. Theses two isotopes define the branching (taken from
Ref. [25, 26]).

points can determine the neutron density during the s-process. Here, 148Sm and 150Sm
(Z=62) are s-process-only isotopes which are shielded against r-process contributions by
the two stable isotopes 148Nd and 150Nd (Z=60). The relative abundances of 148Sm and
150Sm are strongly affected by branchings at 147Nd, 148Nd and 150Nd. Once the branching
nuclei capture the neutrons, they will bypass 148Sm in the flow, and the 150Sm abundance-
times-cross section product will be larger for 150Sm than for 148Sm. Considering that
the n-capture rate λn is proportional to the neutron density nn, nn can be evaluated
from the relative 150Sm 148Sm abundances, resulting in nn = (4.1± 0.6)× 108 cm−3 [30].
Similarly, the weak s-process component (produced in the He- and C-burning phases of
massive stars) yields neutron densities of order (0.5− 1.3)× 108 cm−3 [31, 32].
The temperature of the s-process sites can be determined by the dependence of nuclear

states population on temperature at the branchings. It is important to note that under
stellar conditions, the β-half-lives can significantly differ from the laboratory values. In
the laboratory, only the ground state of the nucleus decays. However, the nuclear excited
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states are thermally populated depending on the temperature in the astrophysical sites.
If these excited states have significantly different lifetimes compared to the lifetime of
the ground state, the stellar beta decay rate of a nucleus can deviate from the laboratory
value. In addition, the branching ratio of the s-process flux reflects the the competition
of n-capture and beta decay rates. Combining these two facts, s-process abundances at
branching points allow us to determine the temperature of the s-process site in stars [25].
For example, according to the research on 176Lu branching [33], the s-process occurs at
the temperature T = (2.5− 3.5)× 108 K. More results from various branching analyses
of relevance are found in Table 2.1.

Branch point isotope Deduced s-process parameter Reference
147Nd/147Pm/148Pm nn = (4.1± 0.6)× 108 cm−3 [34]

151Sm/154Eu T = (3.5± 0.4)× 108 K [35]
163Dy/163Ho ρ = (6.5± 3.5)× 103 g·cm−3 [36]

176Lu T = (3.1± 0.6)× 108 K [33, 37]
121Sn/122Sb T > 2.4× 108 K [38]

134Cs T = (1.9± 0.3)× 108 K [39]
T = (1.7± 0.5)× 108 K [40]

185W/186Re nn = (3.5+1.7
−1.1)× 108 cm−3 [41]

Table 2.1: The s-process parameters from various branching analyses of relevance for the
main s-process component (taken from Ref. [26]).

2.1.2 The r-process

Many n-capture isotopes are produced exclusively by the s-process or the r-process
or, some by both processes as shown in Fig. 2.3. The two processes contribute roughly
equally to the nucleosynthesis of heavy isotopes. The basic ideas of the r-process have
been known for some time, however, we still do not know where exactly the r-process
occurs and what the reaction sequence is. Considering the density of free neutrons re-
quired for the r-process, the r-process sites point to explosive environments. Supernovae
have long been the prime suspects. Some early studies suggested the edge of the collaps-
ing core of a type II supernova as the site of the r-process [1, 2]. But many difficulties
arose in actual confirmation because it was difficult to create realistic supernova models
that yield explosions. Fortunately, the situation has been improving rapidly with new
high-resolution abundance observations of n-capture elements and models of core-collapse
supernovae.
The most important feature of the r-process is that a large flux of neutrons becomes

available in a short time interval for addition to elements of the iron group. The precise
source of neutrons is not an important issue in this work; any source capable of supplying
a large neutron flux on a time-scale of order 10-100 seconds, would meet the r-process
requirements. The possible astrophysical sites for the r-process could be at the neutron
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Figure 2.3: Solar system abundances of heavy elements produced by r- and s- processes.
Plotted values are the s- and p- nuclei abundances relative to hydrogen. The
curves are not normalised; the two processes have approximately the same
contribution to the solar system’s inventory of heavy elements (taken from
Refs. [1, 24]).

number density nn ≈ 1024 cm−3 which might be reached in supernova envelopes at
temperatures T ≈ 109 K [2].

2.2 Physical sites and conditions of neutron capture
processes

As introduced in Sec. 2.1, the astrophysical sites of the s-process are mainly in the
He-burning layers of low-mass asymptotic giant branch (AGB) stars [28]. While astro-
physical sites of the r-process are not yet unambiguously recognised, the s-process will
be the main focus of this work. And for the further research, first, we have to choose
physical parameters to describe our stellar plasmas in the neutron capture nucleosynthe-
sis. Determination of parameters will be discussed in this Section in detail following the
Section 2.4 of Ref. [3] and Ref. [42].
AGB stars are the final evolution stage of low- and intermediate-mass stars (up to

about 8M� [solar mass]) driven by nuclear burning. This phase is characterised by
nuclear burning of H and He in thin shells on top of the electron-degenerate core of
C and O as depicted in Fig. 2.4 [43]. During the AGB, the H shell dominates the
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Figure 2.4: Schematic structure of an AGB star (taken from Ref. [44]). The stellar
structure consists of a degenerate C-O core, the He-burning shell, a thin
(10−2 to 10−3M�) zone between the H shell and the He shell (He intershell),
the H-burning shell, and a large convective envelope [42].

energy production for most of the time. H is transformed into He. Consequently, the He
shell (hereafter He intershell) expands and is progressively compressed and heated until
the temperature and density become high enough that He burning is triggered in the
bottom layers. The thermonuclear runaway, i.e., thermal pulse, generated by this sudden
release of energy makes most of the He intershell becoming convective, while the envelope
expands and the H shell cools down, the convective He intershell is also recognised as
pulse-driven convective zone (PDCZ). Within the PDCZ, partial He burning creates large
amounts of C. The PDCZ quenches after a time of a few tens to a few hundreds of years,
meanwhile, He burning continues radiatively for another few thousand years, and the
H shell is inactive. The the envelope contracts and H shell burning starts again. The
cycle is repeated for a few up to possibly 100 times. After a limited number of thermal
pulses, the convective envelope penetrates the top layers of the He intershell, bringing
the surface newly synthesised He, C and elements produced by neutron captures. This
recurrent phenomenon is called third dredge-up (TDU) and the C left behind in the
envelope is called 13C pocket. Protons in the envelope are captured by 12C and undergo
the sequence 12C(p,γ)13Ne(β+,ν)13C, which finally forms the 13C pocket as shown in
Fig. 2.5. Consecutively, the sequence 13C(α,n)16O provides a slow but sufficiently high
neutron flux for the s-process nucleosynthesis [45]. This sequence starts at a temperature
of about T ∼ 0.9× 108 K. When the temperature exceeds 2.7× 108 K, another source of
free neutrons will be available via 22Ne(α,n)25Mg reaction.

Based on these facts, for the s-process physical site, we will mainly refer to the C
pocket site in this work. The pocket mass is a uniform mixture of C (20-25%), He (73-
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78%) and a small amount of O [46]. Thus, the considered stellar plasmas will mostly be
composed of He, C with some H mixed from the convective envelope and a few negligible
heavier elements formed by the s-process. The chosen plasma compositions are shown
in Table 2.2. For the temperature, we select T1 = 0.9× 108 K in which the required free
neutron flux is reached for the first time, and T2 = 3.48× 108 K (≈ 30 keV), the widely
used s-process temperature condition according to the classical s-process model.

Elements H He C O

Composition 1 - 78% 20% 2%
Composition 2 75% 25% - -

Table 2.2: Chosen plasma compositions for the s-process physical sites. The percentages
are in terms of mass fractions.

  

Figure 2.5: Illustration of the mass region during the time t of two thermal pulses and
their interpulse phase for a low-mass AGB star. The red solid line indicates
the mass coordinate of the H-free core. The dotted green line shows the
boundaries of convection; each dot corresponds to one model in time. Con-
vection zones are light green. The shown section of the evolution comprises
12,000 time steps. The colours indicate convection zones, layers with H-shell
ashes and the region of the 13C pocket (taken from Ref. [43]).
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Chapter 3

Local Thermodynamic Equilibrium

3.1 LTE assumption

So far, we have introduced the astrophysical sites of interest in Sec. 2.1. Some phys-
ical parameters (such as temperature, neutron density and matter density) describing
the nucleosynthesis sites are given also in Subsec. 2.1.1 and 2.1.2. According to present
knowledge, the s-process is expected to take place at the temperature T ≈ 3.5 × 108K
and the neutron density nn ≈ 108cm−3; the r-process site is expected to be at the tem-
perature T ≈ 109K and at the neutron density nn ≈ 1024cm−3. From those parameters,
we can reasonably assume a hot and dense plasma environment for the nuclear reactions
of interest. Now the question is how we describe such a hot and dense plasma, mostly in
stars. To this end, we consider that the conditions of our plasma can be represented, lo-
cally, by the ideal condition of thermodynamic equilibrium. Thermodynamic equilibrium
is interpreted as implying thermal equilibrium and ionisation-excitation equilibrium, but
not necessarily nuclear equilibrium [47]. This point will be discussed in detail in the next
Section following Chapters 3 and 4 of Ref. [47]. With the LTE assumption, the charge
states of nuclei in our plasma can be simply described by the Saha ionisation equation
in Sec. 3.2. Finally, the formalism of LTE will be discussed for generic nuclear two- and
three- level systems in Sec. 3.3.

3.1.1 Thermal equilibrium

First we examine how well the thermal equilibrium requirement is satisfied in a nu-
cleosynthesis site. Since thermal equilibrium is characterised by a common, uniform
temperature in a given system, the examination of thermal equilibrium can be done by
calculating the temperature gradient. We estimate the average temperature gradient in
a AGB star (a s-process site, see Subsec. 2.1.1), for instance, by taking the 3 × 108 K
for the central temperature Tc and R ≈ 102L� [solar radius] for the radius of the AGB
star; we obtain ∣∣∣∣dTdr

∣∣∣∣ ≈ Tc
R
≈ 10−3K/m, (3.1)

or equivalently, 1 K in 103 m. This is an extremely small temperature gradient. Further-
more, the opacity, i.e., the coupling between matter and radiation, of stellar material is
typically so great that direct radiation from the source will arrive at a target in 10−3 m
which corresponds to a few photon mean free paths. Thus as far as direct radiation is
concerned, the material in a neighbourhood having a radius of a few photon mean free
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paths will be shielded, i.e., the photon-photon interactions are dominant over the photon-
particle interactions. In the same manner, under comparable conditions, the mean free
path for collisions of an atom or ion with other particles, especially electrons, is generally
orders of magnitude smaller than the photon mean free path. Again, the material in such
a neighbourhood will be effectively shielded from the surroundings.
Taking the above considerations into account, the material in the vicinity of a given

point is considered to be adiabatically enclosed and at constant temperature. In other
words, the material is effectively in thermal equilibrium at the local temperature in the
vicinity of any given point.

3.1.2 Ionisation-excitation equilibrium

Concerning the ionisation-excitation equilibrium of thermal equilibrium, the "reaction
times" for ionisation and excitation processes can roughly be taken from the mean time
between successive encounters of an atom or ion with photons or other particles; under
typical stellar interior conditions, the reaction times are less than one second in most
cases and are small compared with most time scales of astrophysical interest. Therefore,
the ionisation-excitation equilibrium requirement appears to be well satisfied at a fixed
point in the stellar interior. Together with the thermal equilibrium conditions described
above, it is reasonable to suppose our astrophysical sites to reach, locally, thermody-
namic equilibrium. Under the thermodynamic equilibrium condition, ionisation states
in the system will follow the Maxwell-Boltzmann distribution. Therefore, the relative
number densities of charge states of an ion in thermodynamic equilibrium can be simply
calculated—by so-called Saha equation. We introduce the Saha equation in Section 3.2.
The charge state distribution in the considered plasma will be calculated by solving the
Saha equation.

3.1.3 Nuclear equilibrium

The strict thermodynamic equilibrium includes both thermal equilibrium and chemical
equilibrium. However, this is only an idealised condition. In reality, systems can only
be considered as being in approximate thermodynamic equilibrium and references to
thermodynamic equilibrium are valid only in the context of the certain physical system
under consideration and of the time scales of interest. As discussed already in 3.1.1
and 3.1.2, our system is considered to fulfill thermal equilibrium and partial chemical
equilibrium for ionisation-excitation processes.
There are various chemical reactions possible in nature, each kind having its on reaction

time treact which is generally a function of matter density and temperature. To examine
how well the system is in chemical equilibrium, we can compare the reaction relaxation
time treact of a specific chemical reaction, i.e., the characteristic time required for attaining
chemical equilibrium for a certain reaction, with the time of interest tint. If tint > treact,
the chemical equilibrium is attained, and if tint < treact, chemical equilibrium is not
established in the time of interest.
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In applications to stars, the times of interest are generally long (say, for T > 103K)
compared with the reaction times for chemical reactions involving molecules and for exci-
tation and ionisation reactions involving molecules, atoms, ions, electrons, and photons.
Equivalently, tint > treact, the chemical equilibrium is reached among molecules, atoms,
ions, electrons, and photons. However, under stellar conditions in hotter environments
(say, for T < 109K), these times of interest are becoming shorter compared with the time
required for reaching chemical equilibrium among nuclei, i.e., tint < treact, thus nuclear re-
actions are not in equilibrium. For even larger temperatures, say, T > 109K, tint ≥ treact.
Considering that astrophysical sites of s- and r- processes are at the temperature of order
108 ∼ 109K, our system is mostly not in nuclear equilibrium.
In stellar work, a suitable interpretation of thermodynamic equilibrium is one that

implies thermal equilibrium and chemical equilibrium among molecules, atoms, ions,
electrons and photons, but not necessarily among nuclei. Thus, for example, a system
in thermal equilibrium and in excitation-ionisation equilibrium, but in which irreversible
nuclear reactions occur at a significant rate, would be still regarded as being in local
thermodynamic equilibrium (LTE).

  

Rates out = Rates in

k

i

j

Figure 3.1: Illustration of the principle of detailed balancing for a level i in an atom. The
sum of the rates of all transitions into a level i is balanced by the sum of the
rates out (adapted from Ref. [48]), i.e., the net flow is zero. Moreover, each
flow into individual energy level is balanced by its inverse.

Under the assumption of LTE, the material particles in the plasma are assumed to
be in states that can be characterised by a single parameter, the temperature. Under
these conditions, the populations of energy levels of atoms follow the Maxwell-Boltzmann
statistics. The level populations are constant in time. Thus, the flow into any energy level
must be balanced by the flow out of that level. This condition must hold at any time.
However, in thermodynamic equilibrium, not only must the net flow be zero, so must the
net flows that arise from individual levels as illustrated in Fig. 3.1. Every process must
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be matched by its reciprocal process. This concept is known as the principle of detailed
balancing [49]. This principle should hold as long as the system is in thermodynamic
equilibrium.
However, in LTE, the system is not necessarily in nuclear equilibrium. In other words,

the nuclear excited states possibly do not follow the standard Maxwell-Boltzmann dis-
tribution. For example, nuclear isomers, i.e., long-lived excited nuclear states, might
prevent nuclear excited states populations to obey the Maxwell-Boltzmann distribution.
The reason for this is that isomers can be directly populated by gamma decay cascades
following neutron capture and can have beta decay rates very different from the ones of
the nuclear ground states. Due to their long lifetime, equilibration with the ground state
and the other non-isomeric excited states is not always possible. Therefore, isomers have
to be treated as special nuclear species in the nucleosynthesis nuclear reaction networks
under stellar conditions.

3.2 Saha ionisation equation

Under the assumption of LTE, we can use the Saha ionisation equation to describe
the charge states of atoms in the plasma. The Saha equation which has been originally
introduced by Megh Nad Saha in Ref. [21] gives us a clue about the charge state of an
atom in the plasma. It provides us the relative number densities of the different charge
states of specific atom species in thermodynamic equilibrium. In this Subsection, the
Saha ionisation equation will be derived following the Chapter 3 of Refs. [3, 47].
From statistical mechanics [50], we know that, in thermodynamic equilibrium, the

number of weakly interacting particles with total energies per particle in the range be-
tween E and E + dE is given as

dN =
db

exp (E/kBT − η) + 1
for fermions

=
db

exp (E/kBT − η)− 1
for bosons,

(3.2)

where db is the number of possible quantum states, η is the degeneracy parameter which
is related to the chemical potential µ by η = µ/(kBT ), where T is the temperature and
kB is the Boltzmann constant. The factor db is often called the statistical weight, since,
apart from the factor in the denominator, the probability of finding a particle will be
proportional to db. If the levels in the system are discrete, such as in an atom, db becomes
bi, the degree of degeneracy, or the total number of quantum states with energy E. For
example, db of an atom whose total angular momentum quantum number is J is

bi(J) = 2J + 1, (3.3)

thus, for a free electron, whose spin is 1/2, be = 2 · 1
2 + 1 = 2.

On the other hand, free particles have continuous energy levels. For the sake of counting
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  L

Figure 3.2: Standing waves in a box with sides L (adapted from Ref. [47]).

the number of quantum states in a given energy range, we confine the particles within a
box of volume L3. The de Brogile wavelength of the particle is

λ = h/p (3.4)

where h is the Planck’s constant and p is the momentum of the particle. Now λ can only
have the values corresponding to standing waves, because the waves should have nodes
on the boundaries. To have complete standing waves within the box, we must have the
periodic boundary conditions

L = nx,y,z · λx,y,z, nx,y,z = 1, 2, · · · , (3.5)

or,
λx,y,z = L/nx,y,z = h/px,y,z (3.6)

for each direction (x, y, z), where

px,y,z = nx,y,zh/L, nx,y,z = ±1,±2, · · · , (3.7)

where all negative values of nx,y,z are related to the negative values of px,y,z. Hence, the
momenta of particles in the box can only have the discrete values

p2 =
h2

L2
(n2
x + n2

y + n2
z), nx,y,z = ±1,±2, · · · . (3.8)

In the next step, we consider a box in momentum space, placing its corner at the origin,
having sides of length nxh/L, nyh/L and nzh/L as shown in Fig. 3.3. The number of
lattice points, or equivalently, quantum states, contained therein is

(nx + 1)(ny + 1)(nz + 1) (3.9)
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and the volume of the box in the momentum space is

nxnynz
h3

L3
. (3.10)

Therefore, the number of quantum states per unit volume of momentum space is obtained
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Figure 3.3: Momentum p of a particle in momentum space (adapted from Ref. [47]).

by dividing Eq. (3.9) by Eq. (3.10),(
1 +

1

nx

)(
1 +

1

ny

)(
1 +

1

nz

)
L3

h3
' L3

h3
, (3.11)

if we take nx,y,z sufficiently large. This gives a volume of h3 per particle in phase space.
With the phase space volume V p2dpdΩ (particles confined in solid angle Ω with momenta
between p and p + dp), the statistical weight of free particles within the full solid angle
will be

db =
4πp2dp

h3
V. (3.12)

As long as electrons can occupy the same quantum state twice with different spins as
stated in Pauli’s exclusion principle, we multiply the factor 2 to the obtained statistical
weight be. Putting the above equations together, we can calculate the number density of
electrons with energy Ee from Eq. (3.2):

ne =
N

V
= be

∫ ∞
0

dN

V
= be

∫ ∞
0

4πp2dp

h3

1

exp [Ee/kBT − η] + 1
. (3.13)

Now we focus on non-degenerate particles with the constraint −η � 1, corresponding
to a specific ionisation state and in a discrete state k. Then Eq. (3.2) reduces to the
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Maxwell-Boltzmann distribution

Nk = bk exp [η − εk/kBT ], (3.14)

where εk is the excitation potential. The ratio between two excitation levels k and o
returns the Boltzmann equation:

Nk

No
=
bk
bo

exp [(εo − εk)/kBT ]. (3.15)

Our system is composed of a mixture of particles of three kinds:

(1) j-times ionised atoms (i.e., an atom has lost j electrons) of a kind;
(2) (j + 1)-times ionised atoms of the same kind;
(3) free electrons.

For the particle types of (1) and (2), only the total numbers of ions for the given ioni-
sation state is considered and they are assumed to be non-degenerate (−ηj+1 � 1 and
−ηj � 1) and non-relativistic. Under the chemical equilibrium condition, every reaction
will happen at the same rate as its reverse reaction. This can be expressed as an equation
with the chemical potential µ. For our ionisation process,

µj+1 + µe − µj = 0, (3.16)

with the µj+1 indicating the chemical potential of the (j + 1)-times ionised atom and
the subscript e denoting the electron. Assuming identical temperature for each reactant,
and using the definition of degeneracy parameter, we have

ηj = ηj+1 + ηe, (3.17)

as the condition for chemical equilibrium. The corresponding energies for particles are,

particle (1) : Ei,j,k =
p2

1

2mi,j
+ εi,j,k,

particle (2) : Ei,j+1,o =
p2

2

2mi,j+1
+ εi,j+1,o + Ii,j −mec

2,

particle (3) : Ee,

(3.18)

where Ii,j is the ionisation potential of an atom of species i in ionisation state j the
minimum energy required to remove an electron from the ground state of j-times ionised
atom; εi,j,k is the excitation potential of the excited levels above the ground states of
the given atom species with k denoting the excitation state, and m is the mass of a
given particle. Here, Ii,j does not consider the mass loss of the atom from the ionisation,
therefore, one has to subtract the electron rest energy from particle (2) by hand. As a
result, Ee contains the kinetic and rest energy the electron.
To finally get the number density for particle (1) and (2), one has to know the number
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of occupied quantum states. This can be done by summing over the statistical weights
per energy level weighted by the Boltzmann factor which is equivalent to the partition
function

bi,j =
∑
k

bi,j,k exp

(
−
εi,j,k
kBT

)
. (3.19)

Combining Eqs. (3.18), (3.19) and the non-degenerate condition −η � 1 and using Eq.
(3.16), the number densities for particle (1) and (2) are

particle (1): ni,j = bi,je
µi,j+1+µe

kBT

∫ ∞
0

4πp2dp

h3
e
− p21

2mi,jkBT ,

particle (2): ni,j+1 = bi,j+1e
µi,j+1
kBT

+mec
2

kBT
−
Ii,j
kBT

∫ ∞
0

4πp2dp

h3
e
− p21

2mi,jkBT .

(3.20)

Integrating over p, we obtain

ni,j = bi,je
µi,j+1+µe

kBT
(2πmi,jkBT )3/2

h3
,

ni,j+1 = bi,j+1e
µi,j+1
kBT

+mec
2

kBT
−
Ii,j
kBT

(2πmi,j+1kBT )3/2

h3
.

(3.21)

Finally, we divide ni,j by ni,j+1 to obtain the Saha equation:

ni,j+1

ni,j
=
bi,j+1

bi,j
·
(
mi,j+1

mi,j

)3/2

· exp

(
mec

2

kBT
− Ii,j
kBT

− µe
kBT

)
. (3.22)

3.3 Internal nuclear equilibration

Generally, the discussions of s-process branchings [11, 51, 52] have been based on the
fact that, for the time-scale determining species, the branching is completely depen-
dent on the competition between neutron capture and excited state beta decay. And
this assumed that in thermodynamic equilibrium, all branching nuclei are fractionally
distributed among their excited states according to the Boltzmann statistical factors.
However, this assumption is valid only if the de-excitations of all excited states to their
ground states by radiative decays happen on a shorter time scale than ones via beta de-
cay. Therefore, one has to investigate the conditions for reaching this "thermodynamic
equilibrium". Many important nuclei in s-process branchings have long-lived isomeric
states that are directly populated by either neutron capture from the previous isotope
or by beta decay from the parent isobar. And such long-lived isomeric states are likely
to influence the nucleosynthesis paths. For example, for these long-lived isomeric states,
there is a significant beta decay branching directly to the next isobar because the state’s
spontaneous radiative de-excitation to the ground state is slower compared to the state’s
beta decay. Or alternatively, if the lifetime of the isomeric state is even longer than that
of the ground state, then it might capture neutrons itself and thereby it results in a sig-
nificant fraction of the total s-process neutron-capture current to pass on through to the
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next isotope, instead of the flow proceeding totally through the ground state’s fast beta
decay to the next isobar [8]. In this Section, we introduce simple two-level and three-level
system formalisms to estimate the time scale of the internal nuclear equilibration, in a
way that we can quantitatively compare the equilibration time scale of different nuclear
processes within isomers. Further, we applying these formalisms to the stellar conditions
where the NEEC and IC are happening to examine the impact of the NEEC and IC
processes in thermalisation.
In this Section, the internal nuclear equilibration by simple two-level and three-level

system will be quantitatively introduced by following the Sections II and III of Ref.
[14]. This discussion is mainly aiming to obtain the relevant time scales as a function
of stellar temperature to establish a thermal distribution of excited-state populations.
These internal equilibration times will be compared with other time scales of interest
and finally in order to confirm whether or not the isomer and the ground state have
sufficient time to obtain thermal equilibrium.

3.3.1 Two-level system

The internal equilibration processes of a two-level system are illustrated in Fig. 3.4.
An idealised nucleus which has only a ground state (o) and a single excited state (e) has
various production (po and pe), internal equilibration (oe and eo) and destruction (od and
ed) channels. Each state is first produced by the production rates as shown in Fig. 3.4,
and goes through the de-excitation and destruction processes with the corresponding
rates. All rates (s−1) are given with appropriate subscripts and g (= 2J + 1) is the
statistical factor for each state.
The time evolution of the abundances no and ne (cm−3) of the ground and excited states
can be described as follows

dno
dt

= λponp − (λoe + λod)no + λeone,

dne
dt

= λpenp − (λeo + λed)ne + λoeno.

(3.23)

The above Eq. (3.23) can be easily solved if one assumes the zero production source
abundance, np = 0 and all other rates to be positive constants. Then the Eq. (3.23)
gives the time-dependent solution

no(t) =
np
s1s2

[λeo(λpo + λpe) + λedλpo]+

np
s2 − s1

2∑
j=1

(−1)j

sj
esjt[λpo(sj + λeo + λed) + λpeλeo],

(3.24)

where s1 and s2 are the two negative solutions of the quadratic polynomial

Q(s) ≡ s2 + (λeo + λoe + λed + λod)s+ λod(λeo + λed) + λoeλed. (3.25)

This time-dependent solution of the ground state abundance determines how fast internal
equilibration operates.
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Figure 3.4: The internal equilibration of a two-level system. A single excited state and
the ground state of a nucleus are connected by internal rates λoe and λeo.
Arrows give the direction of the flows into and out of the ground state (which
is indicated by o, at ground energy 0 with statistical factor go) and the excited
state (which is indicated by e, at excitation energy Ee with statistical factor
ge). Each level is produced at the rate λpk (k = o, e) and is destroyed at the
rate λkd (adapted from Ref. [14].

Using the property that Eqs. (3.23) and (3.25) are symmetric under interchanging o and
e, one can easily obtain the solution for ne(t) by the substitutions o
 e. Combining Eq.
(3.24) and the analogous solution of ne(t), it is clear that the ratio ne(t)/no(t) depends
on the production branching ratios

fpo = 1− fpe ≡
λpo

λpo + λpe
. (3.26)

From Eq. (3.24), one can take the steady-state limit with t→∞, which gives(
ne
no

)
t→∞

=
λoe + fpeλod
λeo + fpoλed

. (3.27)

For isomeric nuclear excited states, the production and the destruction rates are generally
faster compared to the internal equilibration rates, as a result, the rapid destruction is
possible, i.e., fpeλod � λoe and fpoλed � λeo. Therefore, in Eq. (3.27), the steady-state
abundance ratio becomes (

ne
no

)
t→∞

=
fpeλod
fpoλed

. (3.28)

For non-isomeric nuclear excited states, it is generally the case that λeo � λed, since the
typical lifetimes of such excited states are on the order of nanoseconds to picoseconds.
This exactly means that non-isomeric nuclear excited states are rather de-excited to the
ground state than are destroyed to other nuclear species. Considering that the upward
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transition rate from the ground state to the excited state λoe is retarded compared to
λeo by the Boltzmann factor as

λoe = λeo

(
ge
go

)
exp

(
−Ee
kBT

)
, (3.29)

which means that λoe � fpeλod is mostly true even for non-isomeric cases. Applying the
above general characteristics of nuclear states, λeo � λed and λoe � fpeλod to Eq.(3.27),
the ratio becomes

(
ne
no

)
t→∞

=
fpeλod
λeo

=

(
fpeλod
λoe

)(
λoe
λeo

)
�
(
λoe
λeo

)
. (3.30)

This ratio can be compared with the thermal population ratio under zero nuclear de-
struction assumption, i.e., λod = λed → 0. And Eq. (3.25) becomes

Q(s) = s2 + (λeo + λoe)s (3.31)

and the time-dependent solution of the ground state abundance is

no(t) =
npλeo(λpo + λpe)t

λeo + λoe
+ np

λpeλeo − λpoλoe
(λeo + λoe)2

{exp[−(λeo + λoe)t]− 1}. (3.32)

Thus for small t, no(t) → npλpot. An analogous solution of ne(t) is again obtained
by interchanging o and e from Eq. (3.32) using the same technique which has already
performed at the beginning of this Section to obtain the general solution of ne(t).

Applying the zero destruction assumption to Eq. (3.27) and using the relation between
λoe and λeo in Eq. (3.29), the abundance ratio becomes(

ne
no

)
t→∞

=
λoe
λeo

=
ge
go

exp

(
−Ee
kBT

)
. (3.33)

Consequently, the steady-state abundance ratio with zero external destruction is exactly
the thermal-equilibrium value for general non-isomeric nuclear states. Comparing the
steady-state abundance ratio in Eq. (3.30) exceeds the thermal population ratio in Eq.
(3.33). This equilibrium is achieved on a time scale

t ≥ τeq ≡ (λoe + λeo)
−1 =

1/λeo
1 + (ge/go) exp (−Ee/kBT )

, (3.34)

where τeq is the mean lifetime in the exponential term in Eq. (3.32). Assuming that the
spontaneous electromagnetic transition rate λseo of the excited states is enhanced only
by stimulated emission from the hot stellar photon bath, then the internal equilibration
time of nucleus is given by
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τeq =
1− exp (−Ee/kBT )

1 + (ge/go) exp (−Ee/kBT )

1

λseo
(3.35)

⇒ 1

λseo
for kBT � Ee (3.36)

⇒ Ee/kBT

(1 + ge/go)λseo
for kBT � Ee . (3.37)

From Eqs. (3.35), (3.36) and (3.37), it is evident that τeq ≤ 1/λseo in all cases. In conse-
quence, if there are no external destruction rates for the nuclear states, internal thermal
equilibrium will be reached on a time scale of the downward spontaneous radiative tran-
sition lifetime or less than that [8, 53].
If one considers the case where states in simplified two-level system are destroyed by
destruction rates λod and λed, the total steady-state destruction rates, λss, is defined as

λss ≡
no(t→∞)λod + ne(t→∞)λed

no(t→∞) + ne(t→∞)
=
λod(λeo + fpoλed) + λed(λoe + fpeλod)

λeo + λoe + fpoλed + fpeλod
. (3.38)

For the case of rapid internal equilibration, i.e., no nuclear destruction assumption, using
Eq. (3.33), Eq. (3.38) reduces to

λss =
λod + (ge/go) exp (−Ee/kBT )λed

1 + (ge/go) exp (−Ee/kBT )
. (3.39)

For the case of rapid nuclear destruction, i.e., the opposite of the former case, from Eq.
(3.28), the total steady-state destruction rate becomes

λss =
λedλod

fpoλed + fpeλod
. (3.40)

From Eqs, (3.39) and (3.40), one can conclude that if the destruction rates (λod and λed)
are sufficiently rapid, then the "stellar reaction rate λss" is becoming considerable which
implies a deviation from the normal thermal-mixture.
For some nuclei with sufficiently long isomeric states, their spontaneous radiative decays
are not rapid enough (i.e., λeo ≤ λed) such that direct internal coupling to the ground
state is not available. In the following Subsection, the indirect flows between the iso-
meric state and the ground state triggered via higher-lying intermediate state will be
investigated.

3.3.2 Three-level system

In addition to the two-level formalism, now the simplest form of three-level system will
be introduced. The prototype of three-level system is shown in Fig. 3.5. The system
consists of the ground state o, the isomeric state m and higher-lying intermediate state
i.
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Figure 3.5: The internal equilibration of three-level system with no direct transition be-
tween isomeric states and the ground state. The format is the same as in
Fig. 3.4 but for an additional isomeric state m between the ground state o
and the high-lying excited state i. All the rates of interest are indicated with
appropriate subscripts as in Fig. 3.4 (adapted from Ref. [14]).

The isomeric state m and the ground state o are not directly connected, but they
are linked indirectly via the intermediate higher-lying state i. Each level is produced at
the constant source production rate λpk (k = i,m, o) and is destroyed at the constant
destruction rate λkd. The time evolution of the abundances is given by the coupled
differential equations

dno
dt

= λponp − (λoi + λod)no + λioni,

dnm
dt

= λpmnp − (λmi + λmd)nm + λimni,

dni
dt

= λpinp − (λio + λim + λid)ni + λoino + λminm.

(3.41)

Equations (3.41) are most simply solved, again, under the assumption that all the
rates λ and the source abundance np are constant in time and all other abundances are
initially set to be zero. The time-dependent solution of Equations (3.41) is given as

no(t) =
−np
s1s2s3

× {[λio(λpo + λpm + λpi) + λpoλid]λmi + [λpo(λio + λim + λid) + λpiλio]λmd}

+ np

3∑
j=1

exp (sjt)

sj

[ 3∏
l=1,l 6=j

1

(sj − sl)

]
{[λio(λpo + λpm + λpi) + λpo(sj + λid)]λmi

+ [λpo(sj + λio + λim + λid) + λpiλio](sj + λmd)},

(3.42)

where s1, s2 and s3 are distinct negative roots of the polynomial
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C(s) ≡ (s+ λio + λim + λid)(s+ λoi + λod)(s+ λmi + λmd)

−λimλmi(s+ λoi + λod)− λioλoi(s+ λmi + λmd).
(3.43)

Again, the analogous solution forthe isomeric state abundance, nm(t), can be obtained by
interchanging the subscripts o and m. With the obtained solutions no(t) and ne(t), one
can examine the abundance ratio no(t)/nm(t). This ratio is independent of the constant
total production rate, i.e., (λpi + λpm + λpo), for all times.
Before introducing the steady-state abundance ratio as in Subsection 3.3.1, first, one
defines the intermediate state branching ratio, as

fia ≡
λia

λio + λim + λid
for a = o,m, d, (3.44)

and the source branching ratio, as

fpb ≡
λpb

λpo + λpm + λpi
for b = o,m, i. (3.45)

Since the first term in Eq. (3.42) indicates the steady state solution, it is easy to attain
the steady-state abundance ratio,(

nm
no

)
t→∞

=
(fim + fpmfid)λoi + (fpm + fpifim)λod
(fio + fpofid)λmi + (fpo + fpifio)λmd

. (3.46)

Consider now the two extreme cases for Eq. (3.46). If the destruction rates are
sufficiently rapid, then one obtains(

nm
no

)
t→∞

=
(fpm + fpifim)λod
(fpo + fpifio)λmd

. (3.47)

Or else, if the internal equilibration rates are dominant over the destruction rates, then
one has (

nm
no

)
t→∞

=
fimλoi
fioλmi

=

(
λim
λmi

)(
λoi
λio

)
. (3.48)

According to the principle of detailed balance, the thermal-equilibrium population ra-
tios between the upward and downward transition rates are weighted by the Boltzmann
factors, as

λoi
λio

=
gi
go

exp (−Ei/kBT ) (3.49)

and

λmi
λim

=
gi
gm

exp [−(Ei − Em)/kBT ]. (3.50)

Making use of Eqs. (3.49) and (3.50), Eq. (3.48) becomes
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(
nm
no

)
t→∞

=
gm
go

exp (−Em/kBT ). (3.51)

The steady-state ratio is attained on a time scale which is determined by the roots
of C(s) in Eq. (3.43). The steady-state solution is achieved in times t � 1/|s3|, where
the three distinct roots of Eq. (3.43) are arrayed as |s3| > |s2| > |s1|. To examine the
time scale of the internal transition rates operating to produce the thermal equilibrium
ratio in Eq. (3.51), one assumes zero destruction rates, i.e., λod = λmd = λid = 0 and
reexamines the polynomial C(s) to find that C(s) → sR(s) where R(s) is given as the
polynomial

R(s) ≡ s2 + Λs+ Ω (3.52)

with

Λ ≡ λio + λoi + λim + λmi (3.53)

and

Ω ≡ λmiλio + λoi(λim + λmi). (3.54)

Here, we assume that the two distinct roots of R(s) are given as

s1 =
−Λ− (Λ2 − 4Ω)1/2

2
(3.55)

and

s2 =
−Λ + (Λ2 − 4Ω)1/2

2
. (3.56)

To calculate the solution for zero nuclear destruction rates, we set λkd = 0, k = o,m, d
and the coupled Eq. (3.41) gives the solution

no(t)⇒
npλioλmi(λpo + λpm + λpi)t

s1s2
+

np
s2 − s1

2∑
j=1

(−1)j

s2
j

[exp (sjt)− 1]

×{[λio(λpo + λpm + λpi)λmi + sj [λpo(λio + λim + λmi) + λpiλio] + λpos
2
j}.

(3.57)

The corresponding solution for nn(t) is attained by exchanging the subscripts o and m
from Eq. (3.57) as it has been performed earlier. Since the destruction rates are neglected,
in the steady-state limit where t→∞, nm/no produces the thermal-equilibrium ratio of
Eq. (3.48). The time scale of reaching this equilibrium is determined from s1 and s2.
From Eqs. (3.49) and (3.50), it is clear that the upward transition rates are weighted by
Boltzmann factors compared to the downward transition rates. Using this property, we
can take λoi � λio and λmi � λim for our estimation. Additionally, we can easily get
that Λ2 � 4Ω. Combining these and expanding the second term, the roots of R(s) then
become
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s1 ≈ −Λ ≈ −(λio + λim) ≡ −λi, (3.58)

where λi indicates the total downward decay rate of the intermediate state, and

s2 ≈
−Ω

Λ
≈ −

(
λmiλio + λoiλim

λio + λim

)
= −(fioλmi + fimλoi). (3.59)

From Eqs. (3.58) and (3.59), it is obvious that |s2| � |s1| for s2 involving upward
transitions. Hence, the mean internal equilibration time is defined by

τeq ≡
1

|s2|
, (3.60)

or alternatively,

1

τeq
≈ 1

fioλmi + fimλoi

= fimfioλi

{
gi
gm

exp [−(Ei − Em)/kBT ] +
gi
go

exp (−Ei/kBT )

}
.

(3.61)

If Em is comparable with Ei then Eq. (3.61) reduces to

τeq ≈
gm
gi

exp [(Ei − Em)/kBT ]

fimfioλi
. (3.62)

Before interpreting Eq. (3.62), one has to pay special attention that: (i) the temperatures
should not be too high to suppress the Boltzmann factors to unity; (ii) the two roots
of R(s) have to be calculated from the above Eqs. (3.55) and (3.56); (iii) The decay
rates λio and λim should be adjusted by stimulated emission as discussed in Subsection
3.3.1. This simple three-level formalism has the advantage for estimating the time scale of
equilibration under a given intermediate level indirectly linking the ground and isomeric
states.
The general approach of examining the transitions between an isomer of a nucleus and
its ground state given a number of intermediate states is not going to be discussed here.
However, one can find a more general way to solve the similar types of problems in Refs.
[14, 54].

3.4 Equilibration of NEEC and IC

The s-process occurs in the hot and dense plasma where ions are in highly-charged
states. Once a free electron is recombined by NEEC, the electron will be soon ionised.
However, the time scale of other competing ionisation processes such as collisional ionisa-
tion is expected to be shorter than one by IC—the time-reversed process of NEEC. As a
result, the IC channel is closed fast and only NEEC will operate. Under these conditions,
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we therefore expect that the principle of detailed balance does not hold for NEEC and
IC.
To examine this point, we estimate the time scale of collisional ionisation. We take

152Eu under the stellar plasma conditions as an example. The temperature is assumed
to be T2 = 3.48 × 108 K which has been chosen in Sec. 2.2. The collisional ionisation
rate is estimated from the following formula given by Ref. [55]

νcol ≈ neve4πa2
b ·

U2
H

UkkBT
· ln kBT

Uk
, (3.63)

where ab is the Bohr radius, ve is the electron velocity and Uk and UH are the ionisation
potentials of the ionised species (here, 152Eu) and hydrogen, respectively. From ln kBT

Uk
in the equation, it is clear that kBT > Uk. For the cases where kBT < Uk, kBT is
approximated to Uk and ln kBT

Uk
≈ 1. The electron density ne is then weighted by the

Maxwell-Boltzmann statistics. The time scale can be easily estimated by taking the
inverse of collision rates. The results are listed in Table 3.1.

Ion configuration Ionisation potential (keV) tcoll (s)

H 55.780 2.079× 10−14

He 54.560 1.989× 10−14

Li 13.370 3.694× 10−15

Be 13.090 3.562× 10−15

B 12.530 3.311× 10−15

Table 3.1: The time scale of collisional ionisation for 152Eu for different ionic configura-
tions. The plasma is considered to be in Composition 1 at T2.

The IC rates can be calculated from the NEEC rate by using the principle of detailed
balancing. This will be shown later in Chapter 4. Again, we take 152Eu as an example.
The calculated time scales are listed in Table 3.2. It is obvious that the time scale of

tic (s)

Bound electron 0 1 2

M1 2.12× 10−6 2.26× 10−6 2.39× 10−6

E2 4.39× 10−5 4.66× 10−5 5.00× 10−5

Table 3.2: The time scale of IC for 152Eu with different ionic configurations. The number
of bound electrons is indicated. This result does not include any plasma
information.

collisional ionisation is shorter than that of IC by several orders of magnitude. We can
conclude that the recombined electrons in ions will be kicked out mostly by collisions
and not by IC. Thus, the IC channel is closed much faster than the equilibration between
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NEEC and IC can be reached. Consequently, the reaction rates for NEEC and IC can
be considered separately. Using this point, we can investigate if NEEC could effectively
depopulate isomers or not. To do this, we calculate the NEEC reaction rates for test
isomers in the s-process sites. The theoretical treatment of NEEC will be discussed in
detail in the next Chapter. Test isomers for the calculations will be selected in Section
5.1.
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Chapter 4

Nuclear Excitation by Electron Capture

A resonant recombination process where a free electron is captured into the bound
state of a highly-charged ion with the simultaneous excitation of the nucleus is called
nuclear excitation by electron capture (NEEC). Since NEEC is a resonant process, the
electronic and nuclear energy levels have to match. The recombination happens with the
simultaneous excitation of the nucleus as shown in Fig. 4.1.

  

L

K

E

G

(i) Initial state

L

K

E

G

(d) Resonant state

L

K

E

G

(f) Final state

Figure 4.1: An example of NEEC recombination process. First, a free electron in the
continuum is captured into the K shell of a bare nucleus (i.e., there is no
bound electron). Simultaneously, the nucleus is excited from the ground
state G to the excited state E. Finally, the excited nucleus decays radiatively
to the ground state G (adapted from Ref. [16, 56]).

The NEEC process was first proposed theoretically by Goldanskii and Namiot in 1976
[15] and the cross section for NEEC was calculated by Yuan and Kimball [20]. Since
then, NEEC has been applied to studies of recombination in plasmas [4–7] and in solid
targets [17–20]. Despite the effort to demonstrate the occurrence of NEEC experimen-
tally, a direct observation of NEEC was not yet reported. What makes the observation
challenging is the extremely narrow nuclear resonances of the process. The much broader
energy distribution of continuum electrons experimentally available compared to the very
narrow energy range that matches with the nuclear resonance width makes it difficult
to distinguish the signal from the background [56, 57]. The time-reversed process of
NEEC, the internal conversion (IC) where the nuclear de-excitation occurs by kicking
out a bound electron, is also a nuclear de-excitation process of interest in this work.
The next Sections will be devoted to the theoretical formalism of NEEC developed by
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Pálffy, including the Hamiltonian of the system, the transition amplitude and finally, the
cross section. This will be performed mainly by following Chapter 1-3 of Ref. [16] and
Chapter 3 of Ref. [56]. Atomic units (me = ~ = e = 1) will be used throughout the
whole calculations.

4.1 Decomposition of Fock space

The initial state |Ψi〉 of the system is composed of the nucleus in its ground state,
an electron configuration with a free electron and the radiation field in the vacuum as
shown in the first diagram of Figure 4.1. The composed state vector is finally written as
a direct product of nuclear, electronic and photonic states, respectively:

|Ψi〉 = |IiMi,Ψ
el
i , 0〉 ≡ |IiMi〉 ⊗ |Ψel

i 〉 ⊗ |0〉 , (4.1)

where the nuclear ground state is denoted by the total angular momentum Ii and its
projection Mi; the electronic state is split into the bound and free electron parts—and
the free electron wave function |pms〉 is denoted by its momentum p and spin projection
quantum number ms.
The resonant state is then reached via excitation of the nucleus by the recombination of
a free electron. Meanwhile, the radiation field is still in the vacuum state as in the initial
state depicted in the second diagram of Figure 4.1. The resonant state is given as

|Ψd〉 = |IdMd,Ψ
el
d , 0〉 ≡ |IdMd〉 ⊗ |Ψel

d 〉 ⊗ |0〉 , (4.2)

with the resonant electronic state |Ψel
d 〉 given by

|Ψel
d 〉 = |ndκdmd〉 . (4.3)

Again, the quantum numbers Id and Md determine the nuclear excited state; nd, κd and
md are the principal quantum number, Dirac angular momentum number, and magnetic
quantum number of the bound one-electron state, respectively.
Eventually, the nuclear excited state decays radiatively back to the ground state. This
final state is shown in the last diagram of the Figure 4.1. At the time, the electronic
state remains unchanged. This state can be written as

|Ψf〉 = |IfMf,Ψ
el
d , λkLM〉 ≡ |IfMf〉 ⊗ |Ψel

d 〉 ⊗ |λkLM〉 , (4.4)

where the quantum numbers If and Mf represent the final state of the nucleus; and the
de-excitation of the nucleus produces a photon which is characterised by wave number
k, total angular momentum L and its projection M . The parameter λ determines that
if the produced wave is of electric (λ = E) or of magnetic (λ =M) type. The photonic
state can also be written with the photon creation operator a†λkLM as

|λkLM〉 = a†λkLM |0〉 . (4.5)

The conjugate photon annihilation operator is aλkLM .
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4.2 The Hamiltonian of the system

Since the system is concerning the interaction between the nucleus, electrons and
photon, the total Hamiltonian operator of the system is naturally composed of nuclear,
electronic and photonic degrees of freedom, as

H = Hn +He +Hr +Hen +Her +Hnr. (4.6)

In our framework, the nucleus is described by a collective model, since it is easier to relate
the nuclear matrix elements with available experimental data without being affected by
nuclear wave function constructions. This point is discussed in detail in Sec. 3.2 of Ref.
[56]. For the case of an even-even nucleus (even number of protons and even number of
neutrons), the Hamiltonian of the nucleus, Hn, can be expressed in terms of creation and
annihilation operators of the collective modes, β†lm and βlm, as

Hn =
∑
lm

ωl

(
β†lmβlm +

1

2

)
, (4.7)

where ωl implies the phonon frequency.
The relativistic Dirac Hamiltonian of the free electron is written as

He = cα · p + (β − 1)c2, (4.8)

where α is the vector composed of the Dirac matrices (αx, αy, αz) and β is the fourth
Dirac matrix.
The Hamiltonian of the quantised radiation field can be expressed, again, in terms of the
photon creation and annihilation operators with frequency ωk,

Hr =
∑
λkLM

ωka
†
λkLMaλkLM . (4.9)

The interactions between the subspaces are expressed by remaining terms: Hen describing
the electron-nucleus interaction, Her, the electron-radiation interaction, and Hnr, the
nucleus-radiation interaction, respectively.
For the electron-nucleus interaction, we adopt the Coulomb gauge, which allows us to
separate the dominant Coulomb attraction between the electronic and the nuclear degrees
of freedom,

Hen =

∫
d3rn

ρn(rn)

|re − rn|
, (4.10)

where re and rn describe the spatial coordinates of the electron and the nucleus, respec-
tively. The integration is performed over the entire volume of the nucleus.
The interaction of the electron and the radiation field is given by

Her = −α ·A =
∑
λkLM

(
a†λkLMα ·AλkLM (r) + H.c.

)
, (4.11)
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with the vector potential of the electromagnetic field

A(r) =
∑
λkLM

(
AλkLM (r)a†λkLM +A∗λkLM (r)aλkLM

)
. (4.12)

The radiation field is quantised in the volume of a sphere with radius R, the two inde-
pendent solutions of the wave equation for the AλkLM (r) are

A(M)kLM (r) =

√
4πck

R
jL(kr)Y M

LL(θ, ϕ),

A(E)kLM (r) =
i

k

√
4πck

R
∇×

(
jL(kr)Y M

LL(θ, ϕ)
)
,

(4.13)

where the wave number k is quantised appropriately by the boundary conditions at a
perfectly conducting sphere of radius R. The term jL represents the spherical Bessel
function and Y M

LL is the vector spherical harmonics, which is defined as [58]

Y M
JL(θ, ϕ) =

∑
ν

∑
q

C(L 1 J ; ν q M)YLν(θ, ϕ)εq, (4.14)

where YLν represents the spherical harmonics [58] and the spherical vectors εq (q = 0,±1)
are expressed in terms of the Cartesian unit vectors as

ε+ = − 1√
2

(ex + iey),

ε0 = ez,

ε− =
1√
2

(ex − iey).

(4.15)

The vector spherical harmonics are irreducible tensors of rank J with components M =
−J, · · · , J . Thereby, J is subject to L− 1 ≤ J ≤ L+ 1.
By using the multipole expansion of the electromagnetic field, Hnr can be expressed in
terms of the electric and magnetic multipole fields,

Hnr = −1

c

∑
λkLM

(
a†λkLM

∫
d3rnjn(rn) ·AλkLM (rn) + H.c.

)
, (4.16)

where jn is the nuclear current density. Again, the integration is performed over the
complete nuclear volume.
The electron-nucleus interaction term Hen in Eq. (4.10) is responsible for the electric
transitions of the nucleus. Using the collective model [59–61] with the electric multipole
transition moment Qlm (see Appendix B of Ref. [60])

QLM =

∫
d3r rLYLM (θ, ϕ)ρn(r), (4.17)
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where ρn represents the nuclear charge density, we can write Hen compactly,

Hen =
∑
LM

QLM

Rl0

∫
drn

δ(R0 − rn)Y ∗LM (θn, ϕn)

|re − rn|
. (4.18)

The full derivation is given in Ref. [16].
The Hamiltonian for the magnetic multipole transitions of the nucleus is deduced by
applying the perturbation expansion to the total Hamiltonian. The first-order terms
include energy corrections due to Coulomb nuclear polarisation, nuclear self-energy and
electronic one-loop self energy. In the second-order term, one can identify the Hamilto-
nian responsible for the magnetic interaction between the electronic and nuclear currents.
According to Ref. [16], the Hamiltonian for magnetic transitions reads

Hmagn = −1

c
α ·
∫
d3rn

jn(rn)

|re − rn|
. (4.19)

Exploiting properties of the vector spherical harmonics for the vector potential [62] and
assuming that the electron does not enter the nucleus, the interaction Hamiltonian can
be expressed in terms of the magnetic multipole moment MLM [62]

Hmagn = −i
∑
LM

4π

2L+ 1

√
L+ 1

L
r−(L+1)
e MLMα · Y M∗

LL (θe, ϕe), (4.20)

with the magnetic multipole moment MLM

MLM = − i
c

√
L

L+ 1

∫
d3r rLY M

LL(θ, ϕ) · jn(r). (4.21)

The Hamiltonians for the electric and magnetic transitions of the nucleus in Eqs. (4.18)
and (4.20) will be the basic ingredients for deriving the NEEC rates for electric and
magnetic transitions in Sec. 4.4.

4.3 Total cross section for NEEC

The cross section of a given process can be expressed by the transition operator. Before
we start calculating the NEEC cross section, we assume that the projection quantum
numbers of |Ψi〉 and |Ψd〉 are not resolved in the experiment. Therefore, this part of the
calculation is done by summing over the final states and averaging over the initial states.
Plus, we integrate over the solid angle Ωp of the incoming electrons and average over the
initial state (4π). The NEEC cross can be written as

σi→d
neec =

2π

Fi

1

2(2Ii + 1)

∑
Mims

∑
Mdmd

1

4π

∫
dΩp
| 〈Ψd|Hmagn +Hen|Ψi〉 |2Γd/2π

(E − Ed)2 + Γ2
d/4

, (4.22)

where Fi denotes the flux of the incoming electrons. Here, the isolated resonance approx-
imation is applied, where only a single resonant state Ψd with resonance energy Ed and
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natural width Γd is considered. The interaction Hamiltonians Hmagn and Hen account
for the transitions of electric and magnetic multipolarity induced by the electron-nucleus
interaction which have been defined in Eqs. (4.18) and (4.20).
To write the NEEC cross section more compactly, it is convenient to introduce the NEEC
rate,

Y i→d
neec =

2π

2(2Ii + 1)

∑
Mims

∑
Mdmd

∫
dΩp| 〈Ψd|Hmagn +Hen|Ψi〉 |2ρi, (4.23)

where ρi indicates the initial density of continuum electron states. Since the product of
the incoming electron flux and ρi is independent of the normalisation of the continuum
wave functions, we have

Fiρi =
p2

(2π)3
, (4.24)

with the absolute value p of the free electron momentum p. Using Eqs. (4.23) and (4.24),
the NEEC cross section becomes

σi→d
neec =

2π2

p2
Y i→d
neec Ld(E − Ed). (4.25)

The function Ld is the normalised Lorentz profile occurring in resonant systems,

Ld(E − Ed) =
Γd/2π

(E − Ed)2 + Γ2
d/4

. (4.26)

For an arbitrary capture level |Ψd〉, the width Γd can be divided into an electronic and
a nuclear part,

Γd = Γel
d + Γnucl

d . (4.27)

The nuclear width Γnucl
d then can be split into a radiative and an IC contribution,

Γnucl
d =

∑
f′

(
Ad→f′
r +Ad→f′

IC

)
, (4.28)

where the superscript f′ denotes the final state |Ψf′〉. For the case of IC, the final state
can be characterised by

|Ψf′〉 = |IfMf〉 ⊗ |p′m′s〉 ⊗ |0〉 , (4.29)

following the notations introduced in Sec. 4.1. The IC transition rate Ad→f′
IC is also

related to the NEEC rate Y i→d
neec through the principle of detailed balance,

Ad→f′
IC =

2(2If′ + 1)

(2Id + 1)(2jd + 1)
Y f′→d
neec , (4.30)

where jd is the total angular momentum of the NEEC capture level which will be dis-
cussed later in Sec. 4.4. As we can see from Eq. (4.30), IC rates highly depend on the
electronic structure of atoms. By adding or removing bound electrons in atomic shells,
the IC rates can significantly differ. And if there is no bound electron in the atomic
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shells, the IC channel is closed. For instance, a bare nucleus can only decay radiatively.
In addition, it is important to note that IC happens only if the nuclear excitation energy
is above the ionisation threshold of the bound electrons present, or otherwise, the de-
excitation energy would not be enough to kick the bound electron into the continuum.
In contrast, the radiative decay rate Ad→f

r is independent of the electronic structure. It
is determined by the nuclear matrix element of Hnr. In the case of radiative decay, the
final state will correspond to Eq. (4.4). The radiative decay rate then can be written as

Ad→f′
r =

2π

2Id + 1

∑
Mf′M

∑
Md

| 〈Ψf′ |Hnr|Ψd〉 |2ρf. (4.31)

The matrix elements of Hnr are connected to the reduced transition probabilities B, for
a given multipolarity L,

Ad→f′
r (λ, L) =

8π(L+ 1)

L[(2L+ 1)!!]2

(
En

c

)2L+1

B(λL, Id → If′), (4.32)

where λ determines again if the type of transition is electric (λ = E) or magnetic (λ =M)
and En is the energy of the excited nuclear state. According to the principle of detailed
balance, the reduced transition probabilities for absorbing a photon is related through
the formula

B(λL, Id → If′) =
2If′ + 1

2Id + 1
B(λL, If′ → Id). (4.33)

Often, it is more reasonable to use the integrated cross section instead of σi→d
neec, since the

peak value on resonance E = Ed can be very large, while the width of the resonance is
very narrow. Integrating Eq. (4.25) over the continuum energy E and assuming that p2

and Y i→d
neec are constant over the very narrow region Γd, the resonance strength Si→d

neec is
given as

Si→d
neec =

2π2

p2
Y i→d
neec . (4.34)

Up to now, the population of the nuclear excited state via NEEC is discussed. In the
second step, the nuclear decay has to be considered with branching ratio. The two-step
resonance strength for NEEC followed by the nuclear decay is expressed as

Si→f
neec =

2π2

p2
Y i→d
neecB

d→f. (4.35)

The branching ratio Bd→f describes the probability of the nuclear state d decaying
into considered decay channel f . For example, if the NEEC decays via IC, the branching
ratio evaluates to

Bd→f
IC =

Ad→f
IC

Γnucl
d

. (4.36)
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4.4 Excitation rates via NEEC

To calculate the NEEC rate Y i→d
neec , we have to calculate the matrix elements of tran-

sitions. In this Section, we will focus on calculating the electronic matrix elements and
connecting the nuclear matrix elements with the reduced nuclear transition probabilities.

4.4.1 Electric transitions

For electric transitions, the rate is related to the matrix element of the Coulomb
interaction Hamiltonian Hen in Eq. (4.18). Taking the electric interaction part from Eq.
(4.23) and inserting Eq. (4.18), we have

Y Eneec =
2π

2(2Ii + 1)

∑
Mims

∑
Mdmd

∫
dΩp| 〈Ψd|Hen|Ψi〉 |2ρi

=
2π

2(2Ii + 1)

∑
Mims

∑
Mdmd

∫
dΩp

× | 〈IdMd, ndκdmd, 0|
∑
lm

Qlm

Rl0

∫
drn

δ(R0 − rn)Y ∗lm(θn, ϕn)

|re − rn|
|IiMi,pms, 0〉 |2ρi.

(4.37)

Applying the multipole expansion

1

|re − rn|
=
∞∑
L=0

L∑
M=−L

4π

2L+ 1
YLM (θn, ϕn)Y ∗LM (θe, ϕe)

rL<
rL+1
>

, (4.38)

the electric interaction Hamiltonian becomes

Hen =
∑
LM

4π

2L+ 1

QLM

RL0
Y ∗LM (θe, ϕe)

∫ ∞
0

drnr
2
n

rL<
rL+1
>

δ(R0 − rn). (4.39)

The notations r< and r> stand for the smaller and the larger values of two radii re and
rn, respectively. The matrix element of the Hamiltonian reads

(Hen)di =
1

RL0

∑
LM

4π

2L+ 1
〈IdMd|QLM |IiMi〉

× 〈ndκdmd|Y ∗LM (θe, ϕe)

∫ ∞
0

drnr
2
n

rL<
rL+1
>

δ(R0 − rn)|pms〉 .
(4.40)

As we can see from Eq. (4.40), the matrix element of the electron-nucleus interaction
Hamiltonian is composed of electronic and nuclear parts. The nuclear part can be written
in terms of the reduced element of the electric multipole operator QLM , as in Ref. [58],

〈IdMd|QLM |IiMi〉 =
(−1)Ii−Mi

√
2L+ 1

C(Id Ii L;Md -Mi M) 〈Id‖QLM‖Ii〉 . (4.41)
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Here, C(Id Ii L;Md -Mi M) stands for the Clebsch-Gordan coefficient. The squared
modulus of the reduced nuclear matrix element is proportional to the reduced transition
probability of a certain multipolarity L,

B(EL, Ii → Id) =
1

2Ii + 1
| 〈Id‖QL‖Ii〉 |2, (4.42)

whose values are available from experimental databases.
To evaluate the electronic matrix element, we expand the initial continuum electronic
wave function in partial waves as in Ref. [63],

|pms〉 =
∑
κm

ilei∆κ
∑
ml

Y ∗lml(θp, ϕp)C

(
l

1

2
j;ml ms m

)
|εκm〉 , (4.43)

where ε is the energy of the continuum electron measured from the ionisation threshold,
ε =

√
p2c2 + c4 − c2, κ is the eigenvalue of the relativistic spin-orbit operator. The

total and orbital angular momentum of the partial wave are defined as j and l. ∆κ is the
Coulomb phase which ensures the correct boundary conditions. With these specifications,
we can write the NEEC rate for a given electric multipolarity L as

Y Eneec =
4π2ρi

(2L+ 1)2
R
-2(L+2)
0 B(EL, Ii → Id)(2jd + 1)

∑
κ

|REL,κd,κ
|2C

(
jd L j;

1

2
0

1

2

)2

,

(4.44)

with the electronic radial integral

REL,κd,κ
=

1

RL−1
0

∫ R0

0
drer

L+2
e

[
fndκd(re)fεκ(re) + gndκd(re)gεκ(re)

]
+RL+2

0

∫ ∞
R0

drer
−L+1
e

[
fndκd(re)fεκ(re) + gndκd(re)gεκ(re)

]
.

(4.45)

In the electronic radial integrals, fεκ and gεκ are the small and large radial components
of the relativistic continuum electron wave function

Ψεκm(r) =

(
gεκ(r)Ωm

κ (θ, ϕ)
ifεκ(r)Ωm

−κ(θ, ϕ)

)
, (4.46)

and fndκd and gndκd are the components of the bound Dirac wave functions

Ψndκd(r) =

(
gndκd(r)Ωmd

κd
(θ, ϕ)

ifndκd(r)Ωmd
−κd

(θ, ϕ)

)
, (4.47)

with the spin-angular functions Ωm
κ . The radial integral REL,κd,κ

is calculated numerically.
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4.4.2 Magnetic transitions

Similarly, using the Hamiltonian Hmagn in Eq. (4.20), the matrix element of the NEEC
rate for magnetic transitions can be written as

(Hen)di = 4πi
∑
LM

(−1)M
√
L+ 1

L

1

2L+ 1
〈IdMd|MLM |IiMi〉

× 〈ndκdmd|r−(L+1)
e α · Y −MLL (θe, ϕe)|pms〉 ,

(4.48)

where the complex conjugate of the vector spherical harmonics is used [64],

Y M∗
JL = (−1)L+J+M+1Y −MJL . (4.49)

Again, the nuclear matrix element can be expressed in terms of the reduced magnetic
transition probability of a certain multipolarity L,

B(ML, Ii → Id) =
1

2Ii + 1
| 〈Id‖ML‖Ii〉 |2. (4.50)

The electronic matrix element

〈ndκdmd|r−(L+1)
e α · Y −MLL (θe, ϕe)|pms〉 (4.51)

can be evaluated by expanding the initial continuum wave function |pms〉 with proper
quantum numbers κ,m, as in Eq. (4.43). First, one inserts the vector spherical harmonics
in Eq. (4.14) into Eq. (4.51) and then performs the analytical angular integration. Or
alternatively, one can use the properties of spherical tensors to do the same calculation
more compactly. This calculation is shown in Appendix C of Ref. [16]. After the
calculations, the electronic matrix elements can be written as

〈ndκdmd|r−(L+1)
e α · Y −MLL (θe, ϕe)|pms〉

= i(−1)j−L+ 1
2

√
(2j + 1)(2L+ 1)

4πL(L+ 1)
C(j L jd;m -M md)

(
jd j L
1
2 −1

2 0

)
× (κd + κ)

∫ ∞
0

drer
−L+1
e

[
gndκd(re)fεκ(re) + fndκd(re)gεκ(re)

]
,

(4.52)

where the relation between the Wigner 3j-symbol and the Clebsch-Gordan coefficient is
given by

C(j1 j2 j;m1 m2 m) = (−1)m+j1−j2
√

2j + 1

(
j1 j2 j
m1 m2 −m

)
. (4.53)

Combining the above equations, the NEEC rate for magnetic transitions with a fixed
multipolarity L is obtained

YMneec =
4π2ρi

L2(2L+ 1)2
B(ML, Ii → Id)(2jd + 1)

×
∑
κ

(2j + 1)(κd + κ)

(
jd j L
1
2 −1

2 0

)2

|RML,κd,κ
|2,

(4.54)
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where the magnetic radial integral RML,κd,κ
is defined as

RML,κd,κ
=

∫ ∞
0

drer
−L+1
e

[
gndκd(re)fεκ(re) + fndκd(re)gεκ(re)

]
. (4.55)

Analogously, the magnetic radial integral is solved with a numerical approach as REL,κd,κ
.

4.5 NEEC reaction rates in a plasma

The NEEC is a resonant process which has a very narrow resonance bandwidth. How-
ever, free electrons are distributed with a relatively wide range of kinetic energies in a
plasma. This means that over the broad kinetic energy distribution of the free electrons,
many resonant NEEC channels can exist. In this Section, following Sec. 4.1 of Ref. [56],
we will describe the theoretical formalism for calculating the NEEC reaction rate when
many NEEC channels are possible.
As introduced in Sec. 4.1, the initial and the intermediate states follow the notations in
Eqs. (4.1) and (4.2), respectively. To restrict the number of possible initial configura-
tions, we assume that the free electrons recombine only to the ions in their ground states.
Thereby, the initial electronic configuration α0 is uniquely defined by the the charge state
number q before the electron capture. Using the isolated resonance approximation, the
total NEEC reaction rate in a plasma can be expressed as a summation over all possible
charge states q and all capture channels αd,

λneec =
∑
q

∑
αd

Pqλ
q,αd
neec, (4.56)

where the factor Pq denotes the probability of an ion in the charge state q in the plasma,
and the partial NEEC rate into the capture level αd of an ion in the charge state q is
given by

λq,αd
neec =

∫
dE σi→d

neecφe(E). (4.57)

The single-resonance cross section σi→d
neec is given by Eq. (4.25). The dependence on the

charge state q enters σi→d
neec in the Lorentz profile. The electron flux φe in the plasma

can be written as the product of the density of states g(E), the Fermi-Dirac distribution
fFD(E, Te) for a certain electron temperature Te and the velocity v(E),

φe(E) = g(E)fFD(E, Te)v(E). (4.58)

The electron flux φe depends on the temperature Te and this dependence is included
in the Fermi-Dirac distribution fFD. The density of states g(E) and the velocity v(E)
are determined by the relativistic dispersion relation of the free electrons. The chemical
potential of the electrons which appears in fFD is determined via the normalisation∫

dE g(E)fFD(E, Te) = ne, (4.59)
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where ne represents the number density of the free electrons. Using the definition of the
NEEC cross section and the assumption that the momentum of the free electron and the
NEEC interaction matrix elements are constant over the resonance width of the Lorentz
profile Ld(E − Ed), Eq. (4.57) becomes

λq,αd
neec =

2π2

p2
Y i→d
neec Φres

e (Ed), (4.60)

where the resonant electron flux is given by

Φres
e (Ed) =

∫
dE Ld(E − Ed)φe(E). (4.61)

Since the resonance width of NEEC is narrow in comparison to the energy scale on which
φe is varying, in this work, the Lorentz profile is approximated by a delta function. With
this assumption, we can write the resonant electron flux as

Φres
e (Ed) ≈

∫ ∞
0

dE δ(E − Ed)φe(E) = φe(Ed). (4.62)

Hence, the partial NEEC rate in a plasma is given by

λq,αd
neec =

2π2

p2
Y i→d
neec φe(Ed). (4.63)

The total NEEC reaction rate λneec in Eq. (4.56) highly depends on the charge states
q and the free electron energies which are extracted from the plasma conditions. The
momenta and the energies of the free electrons will be determined by the relativistic
dispersion relation as mentioned above with the according resonant channels, and Pq,
the probability of an ion in charge state q, will be calculated by the Saha ionisation
equation introduced in Sec. 3.2.
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Chapter 5

Numerical Results

Our goal is to investigate if NEEC can efficiently populate or depopulate isomers in
the neutron capture synthesis. To this end, we want to calculate the net NEEC rates
in the stellar plasma. Before the calculation, first, the physical site of the s-process
has to be identified to determine the conditions of our stellar plasmas. The relevant
physical parameters are determined in Sec. 2.2. The chosen temperatures and plasma
compositions are summarised in Table 5.1. The mass density of plasmas is chosen as
ρ = 10 g/cm−3 from Table. 2.1. The test isomers are selected as well in Sec. 5.1. Using
Eqs. (4.56) and (4.63), the total NEEC reaction rate can be written as

λneec =
∑
q

Pq
∑
αd

2π2

p2
Y i→f
neecΦ

res
e . (5.1)

The calculation of λneec in plasmas can be divided into four parts:

I solving the Saha equation to obtain the probability Pq of an ion to be in the charge
state q in the plasma;

II calculating the NEEC rates Y i→d
neec for specific nuclear transitions involving an isomer;

III evaluating the electron flux Φres
e by integrating the Fermi-Dirac distribution.

Parts I and II will be presented in Sec. 5.2 and 5.3, respectively. Part III will be
calculated by using Eq. (4.58) as

φe(E) = g(E)fFD(E, T )v(E). (5.2)

Finally, plugging the results of I, II and III into Eq. (5.1), we obtain λneec. The calculated
resonant electron flux will be presented with the total NEEC reaction rates in Sec. 5.4.

Elements H He C O

Composition 1 - 78% 20% 2%
Composition 2 75% 25% - -

Temperatures (K)

T1 0.9× 108

T2 3.48× 108

Table 5.1: Chosen plasma compositions and temperatures for the s-process physical sites.
The percentages are given in terms of mass fractions.
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5.1 Selection of isomers

Our focus is on those elements in which the nuclear energy level populations are not
expected to follow the Maxwell-Boltzmann distribution. To examine the impact of NEEC
in the s-process nucleosynthesis, we first chose 19 isomers from Refs. [9, 12, 65]. These
isomeric levels are not expected to be equilibrated with the respective ground states due
to their different beta decay rates and to a strong population via gamma decay cascades
following neutron capture. The relevant nuclear data is presented in Table 5.2. Among
those candidates, five isomers are finally selected for actual calculations. The criteria
used for the selection are as follows:

i the low-lying energy levels are of order kBT , i.e., thermal energy;

ii nuclear transition probabilities are available from experimental databases;

iii the IC coefficients in given transitions are large so that IC is significant;

iv isomers possibly beta decay.

The selected isomers are: 58mCo, 99mTc, 121mSn, 124mSb, and 152mEu. Their nuclear
levels are shown in Fig. 5.1. Some of their features are discussed in more detail in the
following:

58mCo: Coulomb enhancement (stellar enhancement of the radiative transition rates of
nuclear excited states by Coulomb interactions among charged particles) ratios of isomeric
transitions in explosive nucleosynthesis are calculated for 58mCo and other isomers in Ref.
[9]. The Coulomb enhancement may link isomers to higher-lying excited states and these
links can be significant in determining the rate at which these isomers are brought into
thermal equilibrium with their ground states under stellar conditions.

99mTc: Technetium (Tc) has three long-lived isotopes of atomic numbers A =97, 98
and 99, respectively. The isotope 98Tc is shielded with respect to both β+- and β−-
decays by stable isobars of ruthenium (Ru) and molybdenum (Mo). The isotope 97Tc is
only produced by the p-process (fast proton capture process) whose detailed mechanism
and site are not clear. Pure p-process isotopes are very rare, though A =97 is close to
92Mo and 94Mo, which are among the most frequent p-process-only nuclides in the solar
system. Based on these facts, it is generally assumed that the Tc isotope present in stars
is 99Tc which can be produced in both s- and r-process. However, these stars do not
have the high neutron densities required for the r-process and the He burning shells in
red-giants are the most probable sites for the s-process. Therefore, Tc is produced by a
pure s-process [66].

121Sn with 123Sn and 124Sn might be important for studying s-only nuclei 122−124Te.
β-lifetimes of the isomer and the ground state are shorter than the n-capture time scale
[12]. Also 121mSn is interesting for the fact that its lifetime is much longer than that of
the ground state, and it is possible for a certain fraction of the ground state 121Sn to be
exhausted in the s-process as a result of neutron capture by the isomeric state. These
instances can be used to estimate the s-process time scale and further, one can separate
the r-process contribution from the synthesis of 121Sn [65].
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124mSb: If 124mSb is not equilibrated due to enhanced beta decay rate under the stellar
conditions, the β-half-life of the isomer would be close to the value for the ground state
(∼ 60 days). Because the isomer is not significantly fed by n-capture and the excitation
from the ground state takes a long time [12].

152mEu: Analysing the path of neutron captures in region A=150-156 enables us to
find the s-process contributions to the abundances of the nuclides 152Gd and 154Gd as
a function of the neutron flux. The lower bound of neutron flux is determined by the
abundance of 152Gd which depends on the isomer ratio of 152Eu. The determination of
the value of neutron flux is hindered by the lack of information on the contribution made
by the p-process to the synthesis of 154Gd and 152Gd [65].

Isomer Energy (keV) Lifetime Transition type IC coefficient Reference
34mCl 146.36 31.99 min M3 0.1656 [9]
46mSc 142.528 18.75 s E3 0.612 [9]
58mCo 24.95 9.10 h M3 2.52× 103 [9]
79mSe 95.77 3.92 min E3 9.48 [12, 65]
85mKr 304.871 4.480 h M4 0.511 [9, 12, 65]
99mTc 140.5106 0.19 ns M1+E2 0.113 [12]

113mCd 263.54 14.1 y E5 4.24 [9, 12, 65]
114mIn 190.2682 49.51 d E4 5.04 [9]
115mIn 336.244 4.486 h M4 1.081 [9, 12]
115mCd 181.0 44.56 d M1+E2 ≈0.0749 [12]
121mSn 6.31 43.9 y M4 8.7× 1010 [12, 65]
123mSn 24.6 40.06 min - - [9, 12]
124mSb 36.8440 20.2 min E3 2.97× 104 [12]
134mCs 11.2442 46.6 ns - - [12]
148mPm 137.9 41.29 d E4 1.23× 104 [9, 12]
152mEu 45.5998 9.3116 h - - [9, 12, 65]
166mHo 5.969 1.20 · 103y - - [9, 65]
176mLu 122.845 3.664 h - - [9, 65]
180mTa 77.2 > 7.1 · 1015y - - [9, 12]

Table 5.2: Considered isomer candidates. IC coefficients are given for the transitions from
the isomeric states to the ground states (data is taken from Nuclear Structure
and Decay Databases [67]).
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Figure 5.1: Nuclear excitation by electron capture for isomer triggering in 58mCo, 99mTc,
124mSb, 152mEu and ground state excitation in 121mSn. The nuclear levels
are labeled with their total angular momentum, parity, and energy (in keV).
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5.2 Charge states of ions in the plasma

5.2.1 Chemical potential

The degree of ionisation in the considered stellar plasmas is evaluated with the help of
the Saha ionisation equation given in Eq. (3.22)

ni,j+1

ni,j
=
bi,j+1

bi,j
·
(
mi,j+1

mi,j

)3/2

· exp

(
mec

2

kBT
− Ii,j
kBT

− µe
kBT

)
. (5.3)

The unknown chemical potential µe can be evaluated by using the relation between µe
and electron energy, and the charge neutrality of plasmas. The degeneracy parameter
included in Eq. (3.22) can be defined as

η =
µe −mec

2

kBT
. (5.4)

As a result, the electron number density (3.13) needed for calculating µe will be changed.
As the relativistic energy of electrons is given by Ee =

√
m2
ec

4 + p2c2, we define new
variables

ω :=

√
1 +

p2

m2
ec

2
and β :=

mec
2

kBT
. (5.5)

Hence, we obtain

Ee
kBT

= βω, p = mec
√
ω2 − 1 and

dp

dω
=

mecω√
ω2 − 1

. (5.6)

Then ne in Eq. (3.13) becomes

ne =
8πm3

ec
3

h3

∫ ∞
1

ω
√
ω2 − 1

exp (βω − µe/kBT )
dω =

8πm3
ec

3

h3

∫ ∞
1

ω
√
ω2 − 1

exp [β(ω − 1)− η]
dω. (5.7)

Using the charge neutrality, we can get another expression for ne. The charge neutrality
assumes that electrons released from atoms by ionisation processes will contribute to
ne in the plasma. Given total number density ρ and the individual mass fraction xi of
atomic species i, we can calculate the atom number densities ni,j if the masses mi,j are
known with the ionisation states j:∑

j

mi,jni,j = ρxi. (5.8)

Using Eq. (5.8), we can assign the charge numbers j to the ion densities and calculate
ne from

ne = ρ
∑
i

xi

( ∑
j jni,j∑

jmi,jni,j

)
=
∑
i,j

jni,j . (5.9)

The ion masses can be approximated by the neutral masses (as will be discussed in the
following Section). The electron density ne will be calculated by Eq. (5.9). Then the
obtained ne is plugged into Eq. (5.7) to evaluate the degeneracy parameter η.
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5.2.2 Approximations

The Saha ionisation equation has been introduced in Sec. 3.2. Before the actual
calculations, the equation can be simplified with some approximations. Since the mass
of nucleons is much higher than that of electrons, the ion masses can be approximated
by the atomic masses. Thus, we obtain from Eq. (3.22),

ni,j+1

ni,j
≈ bi,j+1

bi,j
· exp

(
mec

2

kBT
− Ii,j
kBT

− µe
kBT

)
. (5.10)

In addition, the ion number densities in Eq. (5.8) can be calculated from∑
j

ni,j ≈
ρxi
mi

. (5.11)

The ionisation distribution for the sum in Eq. (5.11) is calculated by a self-consistent
method. We assume that composition elements (H, He, C, O) in the plasma are fully
ionised for the considered temperatures (kBT1 ≈ 7.76 keV and kBT2 ≈ 30 keV). This
assumption is reasonable, since the uncorrected ionisation potential of the considered
ions are of order of maximally ∼ 1 keV (the ionisation potentials are taken from Ref.
[68]). Thus we can simply write the ion number densities as

ni,j ≈ ni =
ρxi
mi

. (5.12)

Now we consider the partition functions given by Eq. (3.19) including the statistical
weight bi,j,k and the excitation energies εi,j,k. This part can be calculated by the schematic
model constructed by K. Takahashi and K. Yokoi in Appendix B of Ref. [13]. They
assumed that single-particle electrons fill up the electronic shells according to the serial
order of the principal quantum number n and of the orbital quantum number l. Then the
ground-state configuration can be specified by the quantum numbers of the last electron
and the number of electrons N in this shell. In the end, the statistical weight is simply
expressed by

bi,j,k =


B0(l, N) for k = 0,

B1(n, l,N) for k = 1,

B2(n, l,N, k) for k > 0,

(5.13)

with

B0(l, N) =
(2(2l + 1))!

N !(2(2l + 1)−N)!
,

B1(n, l,N) =
(2n2)!

(2l2 +N)!(2n2 − 2l2 −N)!
−B0(l, N),

B2(n, l,N, k) =
2(n+ k − 1)2(2n2)!

(2l2 +N − 1)!(2n2 − 2l2 −N + 1)!
.

(5.14)
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Applying the H-like model formula to the outer bound excited electron, the excitation
energies are obtained as:

εi,j,k =

{
0 for k = 0 or j = Zi,

Ii,j − Ry(j+1)2

(n+k−1)2
for k 6= 0, j 6= Zi,

(5.15)

where Ii,j is the uncorrected ionisation potential, Zi, the proton number of the atom
i and Ry, the Rydberg unit of energy, Ry = 13.60569253 eV [69]. The cut-off integer
for the summation in Eq. (3.19) is attained from the highest value for k that satisfies
εi,j,k < Ii,j −∆j where ∆j accounts for the continuum depression correction [3].
In actual calculations, we have considered quantum corrections by treating electrons

relativistically. The detailed treatment of electrons will not be discussed in this work.
For more details, see Chapter 3 of Ref. [3].

5.2.3 Results

Before we solve the Saha equation, we first have to calculate the degeneracy parameter
η and electron number density ne. Consider the plasma Composition 1 at temperature
T1 = 0.9× 108 K, we can calculate ne with Eq. (5.12):

ne = ρ
∑
i,j

jni = ρ
∑
i

Zi
xi
mi

= ρ
(
2
xHe
mHe

+ 6
xC
mC

+ 8
xO
mO

)
= 3.00964× 1032 m−3. (5.16)

By equalising the above value ne with Eq. (3.13), we obtain

η = −2.62098. (5.17)

Including the quantum corrections and ionisation potential corrections from the contin-
uum depression, each ionisation state j from 1 to Z can be evaluated in a recurrence loop.
The number density of a neutral atom is set to be 1. Summing over number densities
of all possible ionisation states, and dividing the number density of ionisation state j by
this sum, we can obtain the ionisation number fraction. Our results are listed in Tables
5.4 - 5.8, Figs. 5.2 and 5.3. The degrees of ionisation of selected isomers are summarised
in Table 5.3.
As we can see from Table 5.3, atoms are more ionised in Composition 1 than in

Composition 2, and are more ionised at the higher temperature T2 than at T1. Since
our goal is to calculate the NEEC rates, we are particularly interested in vacancies of
electronic shells in atoms so that free electrons can recombine. For the lower limit of the
s-process temperature T1, the average charge states range from approximately (Z−5) (for
152Eu with composition 2) to maximally Z (for 58Co with Composition 1). At the higher
temperature T2, less than one bound electron is left on average, and this means that the
L-shell is most likely vacant and the K-shell is partially vacant. With the information
about charge states of atoms and their number density distributions in the plasmas, we
can further calculate the NEEC rates. The results are presented in Section 5.3.
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Composition 1 Composition 2
Isomer Z T1 T2 T1 T2

58Co 27 26.2474 26.7709 25.8349 26.6476
99Tc 43 40.6959 42.6194 39.8344 42.4598
121Sn 50 46.8132 49.6010 45.8700 49.4314
124Sb 51 47.7057 50.5978 46.7828 50.4264
152Eu 63 58.6202 62.4004 58.0935 62.2016

Table 5.3: Degree of ionisation of selected isomers in the plasma Composition 1 and 2
(see table 2.2) at temperature T1 and T2.

Composition 1
Ionisation state j ≤ 22 23 24 25 26 27

T1 ≤0.05 0.30 1.09 12.96 44.60 40.99
T2 ∼0 ∼0 ∼0 0.52 21.85 77.62

Composition 2
Ionisation state j ≤ 22 23 24 25 26 27

T1 ≤0.46 1.69 3.50 23.66 46.35 24.25
T2 ∼0 ∼0 ∼0 1.13 30.24 68.62

Table 5.4: Distribution of 58Co ion number densities in percent as function of the ionisa-
tion degree j at temperature T1 = 0.9 × 108 K and T2 = 0.48 × 108 K in the
plasma Composition 1 and 2.

Composition 1
Ionisation state j ≤ 37 38 39 40 41 42 43

T1 ≤ 0.96 4.65 12.92 17.98 36.58 22.61 4.30
T2 ∼ 0 ∼0 ∼0 0.01 1.28 35.47 63.24

Composition 2
Ionisation state j ≤ 37 38 39 40 41 42 43

T1 ≤0.55 16.78 26.72 21.31 24.86 8.81 0.96
T2 ∼ 0 ∼0 ∼0 0.02 3.01 47.93 49.04

Table 5.5: Distribution of 99Tc ion number densities in percent as function of the ionisa-
tion degree j at temperature T1 = 0.9 × 108 K and T2 = 0.48 × 108 K in the
plasma Composition 1 and 2.
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Composition 1
Ionisation state j ≤ 43 44 45 46 47 48 49 50

T1 ≤0.48 2.97 11.38 25.03 27.91 24.74 6.86 0.58
T2 ∼0 ∼ 0 ∼0 ∼0 0.02 1.74 36.35 61.89

Composition 2
Ionisation state j ≤ 43 44 45 46 47 48 49 50

T1 ≤3.06 10.90 24.01 30.37 19.48 9.93 1.58 0.08
T2 ∼0 ∼ 0 ∼0 0.01 0.09 4.04 48.49 47.38

Table 5.6: Distribution of 121Sn ion number densities in percent as function of the ioni-
sation degree j at temperature T1 = 0.9× 108 K and T2 = 0.48× 108 K in the
plasma Composition 1 and 2.

Composition 1
Ionisation state j ≤ 43 44 45 46 47 48 49 50 51

T1 ≤0.06 0.57 3.39 12.51 26.48 28.50 22.59 5.51 0.40
T2 ∼0 ∼ 0 ∼0 ∼0 ∼0 0.02 1.82 36.50 61.65

Composition 2
Ionisation state j ≤ 43 44 45 46 47 48 49 50 51

T1 ≤0.61 3.43 11.77 24.98 30.44 18.85 8.60 1.21 0.05
T2 ∼0 ∼ 0 ∼0 ∼0 0.01 0.09 4.23 48.57 47.10

Table 5.7: Distribution of 124Sb ion number densities in percent as function of the ioni-
sation degree j at temperature T1 = 0.9× 108 K and T2 = 0.48× 108 K in the
plasma Composition 1 and 2.
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Composition 1
Ionisation state j ≤ 55 56 57 58 59 60 61 62 63

T1 ≤0.30 1.83 13.93 28.89 33.09 18.33 3.49 0.10 ∼0
T2 ∼0 ∼0 ∼0 ∼0 0.01 0.12 4.81 49.98 45.09

Composition 2
Ionisation state j ≤ 55 56 57 58 59 60 61 62 63

T1 ≤2.63 9.35 19.12 24.09 32.67 10.47 1.15 0.02 ∼0
T2 ∼0 ∼0 ∼0 ∼0 0.04 0.24 9.90 59.16 30.66

Table 5.8: Distribution of 152Eu ion number densities in percent as function of the ioni-
sation degree j at temperature T1 = 0.9× 108 K and T2 = 0.48× 108 K in the
plasma Composition 1 and 2.
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Figure 5.2: Ionisation states of 152Eu in percent calculated from the Saha equation at
temperature T1 = 0.9× 108 K in the plasma Composition 1.
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Figure 5.3: Ionisation states of 152Eu in percent calculated from the Saha equation at
temperature T2 = 3.48× 108 K in the plasma Composition 1.
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5.3 NEEC rates for nuclear transitions

The theoretical treatment of NEEC has been introduced in Chapter 4. The microscopic
transition rates Yneec are given in Eqs. (4.44) and (4.54), as

Y Eneec =
4π2ρi

(2L+ 1)2
R
-2(L+2)
0 B(EL, Ii → Id)(2jd + 1)

∑
κ

|REL,κd,κ
|2C

(
jd L j;

1

2
0

1

2

)2

,

YMneec =
4π2ρi

L2(2L+ 1)2
B(ML, Ii → Id)(2jd + 1)

×
∑
κ

(2j + 1)(κd + κ)

(
jd j L
1
2 −1

2 0

)2

|RML,κd,κ
|2.

(5.18)

To calculate the NEEC rates, one has to know the reduced nuclear transition probabilities
B(EL(ML), Ii → Id) and the integrals RE(M)

L,κd,κ
in Eqs. (4.45) and (4.55). The reduced

nuclear transition probabilities and the energies of the nuclear transitions are taken from
experimental data [67]. However, for the numerical integration of the electronic radial
integrals, we have to know the bound and radial functions for the electrons. For the free
electrons in the continuum, we use relativistic Coulomb-Dirac wave functions assuming
that the nucleus is a point-like particle with effective charge Zeff = q where q is the
charge state of the ion. Since the free electron is far away from the nucleus, the internal
structure or the size of the nucleus do not affect the behaviour of the free electron. Once
the free electron is recombined to the nucleus, the electronic bound state is calculated
by the GRASP92 —General-purpose Relativistic Atomic Structure Program— package
[70]. This programme has been developed from 1980s to calculate relativistic atomic
structures. For calculating atomic stationary states and transitions among stationary
states, the multi-configuration Dirac-Fock (MCDF) method is used.
The nuclear radius R0 is calculated from the semi-empirical formula [71]

R0 = (1.0793A1/3 + 0.73587) fm, (5.19)

where A denotes the atomic mass. First term of the radial integral in Eq. (4.45) is
calculated to be 3 orders of magnitude smaller than the second term. This allows us to
approximate REL,κd,κ

as

REL,κd,κ
≈ RL+2

0

∫ ∞
R0

drer
−L+1
e

[
fndκd(re)fεκ(re) + gndκd(re)gεκ(re)

]
. (5.20)

This approximation is equivalent to the assumption that the electron is unlikely to be
found inside the nuclear volume. With this assumption, the calculated NEEC cross sec-
tion deviates by a few percent from the NEEC cross section that is rigorously calculated
by the collective model without making any assumption about the motion of the electron
[16].
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5.3.1 Numerical results

We consider the electron recombining into different unoccupied levels in a given charge
state. The bound electrons of ions are assumed to occupy the lowest level of electronic
shells. The NEEC transition rates Yneec are calculated first. Then the integrated cross
section, the resonance strengths Si→f

neec for NEEC followed by the radiative or IC decay
to the ground state are computed by using Eq. (4.35). The obtained two-step resonance
strengths for all test isomers are listed from Table 5.9 to 5.13. Recombination to orbitals
with angular momenta higher than 1 (l > 1) is also included in the net NEEC reaction
rates but is only shown in Table 5.9.
The resonance strength is computed with different initial electron configurations—bare

nucleus, H-like and He-like ions corresponding to zero, one, and two bound electrons left,
since we saw in the previous Section that those are the most relevant for the considered
plasma conditions. As we can see from Table 5.9, the resonance strength decreases for a
fixed angular quantum number l while the principal quantum number n increases. This is
a general behaviour of NEEC because the capture into deeply bound states is preferred.
It can be best seen from the proportionality of resonance strength S ∼ 1

p2
where p is the

momentum of the recombining electron.
Additionally, we can observe from the calculated results in Table 5.9, that the resonance

strength for a given capture channel decreases as the number of bound electrons increases.
Once the number of bound electrons Nbound increases, the effective charge of the nucleus
seen by the recombining electron decreases (Zeff = Z − Nbound). Moreover, due to
screening effects, the binding energy of a certain bound state becomes smaller if there
are more bound electrons. A smaller binding energy results in a larger resonance energy
Ed which consequently leads to smaller NEEC rates. Hence, NEEC is less likely and
the resonance strength decreases. We can reasonably expect that the resonance strength
continuously decreases as the number of initially bound electrons increases for lower
charge state cases.
From the discussion of the s-process physical sites in Sec. 2.2, we know that T2 is the

most reasonable temperature for the s-process nucleosynthesis. Based on this, we have
calculated the charge distribution of test isomers in Sec. 5.2. From the Saha results, we
see that at T2, most of ions are present in highly-charged states (q ≈ Z) with only one or
two bound electrons left (see Fig. 5.3 and Table from 5.4 to 5.8). Therefore, calculating
the NEEC rates for the cases with up to two bound electrons will be sufficient for the
NEEC reaction rates at T2.
However, if we consider the lower temperature T1 plasma, the distribution of charge

states is broader (see Fig. 5.2). The percentage of lower charge states becomes significant
(≥ 30%). This means if we want to calculate the net NEEC rate λneec at T1, we have to
know the NEEC rates for lower charge states as well. Here, instead of calculating NEEC
rates for all possible charge states, we estimate the NEEC rates in higher charge states
from the calculated results for two bound electrons initially. Additionally, we exclude
the capture levels which are occupied by bound electrons.
This estimation is valid because the difference of Si→f

neec by increasing one bound electron
is maximally around 10% as seen from the numerical values in Table 5.9. Thus we are able
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to provide a reasonable approximation by using the calculated two-bound-electron case
for the lower charge cases. For calculating the NEEC reaction rate λneec, the obtained
NEEC rates are weighted by the charge distribution obtained in Sec. 5.2. In this way, the
uncertainty of the calculated NEEC reaction rates will be less than 10%. This argument
is generally valid for all considered isomers.

Nbound 0 1 2

nlj Si→f
neec (barn·eV)

1s1/2 8.331× 10−7 7.975× 10−7 -
2s1/2 1.558× 10−7 1.451× 10−7 1.388× 10−7

2p1/2 1.121× 10−7 1.030× 10−7 9.177× 10−8

2p3/2 2.136× 10−7 1.959× 10−7 1.740× 10−7

3s1/2 5.769× 10−8 5.264× 10−8 4.957× 10−8

3p1/2 4.406× 10−8 3.975× 10−8 3.489× 10−8

3p3/2 8.379× 10−8 7.550× 10−8 6.608× 10−8

3d3/2 7.969× 10−10 6.478× 10−10 5.184× 10−10

3d5/2 1.066× 10−9 8.698× 10−10 6.980× 10−10

4s1/2 2.610× 10−8 2.358× 10−8 2.202× 10−8

4p1/2 2.040× 10−8 1.826× 10−8 1.592× 10−8

4p3/2 3.881× 10−8 3.468× 10−8 3.016× 10−8

4d3/2 4.514× 10−10 3.683× 10−10 2.957× 10−10

4d5/2 6.044× 10−10 4.947× 10−10 3.983× 10−10

4f5/2 5.981× 10−12 4.524× 10−12 3.376× 10−12

4f7/2 7.263× 10−12 5.502× 10−12 4.112× 10−12

5s1/2 1.369× 10−8 1.231× 10−8 1.144× 10−8

5p1/2 1.084× 10−8 9.666× 10−9 8.405× 10−9

5p3/2 2.064× 10−8 1.837× 10−8 1.593× 10−8

5d3/2 2.585× 10−10 2.112× 10−10 1.699× 10−10

4d5/2 3.463× 10−10 2.839× 10−10 2.289× 10−10

5f5/2 4.815× 10−12 3.649× 10−12 2.729× 10−12

5f7/2 5.840× 10−12 4.433× 10−12 3.320× 10−12

5g7/2 2.663× 10−14 1.840× 10−14 1.264× 10−14

5g9/2 3.081× 10−14 2.141× 10−14 1.481× 10−14

Table 5.9: Two step resonance strengths Si→f
neec for 58Co with different ionic configurations

involving M1 + E2 nuclear transitions (as illustrated in Fig. 5.1). NEEC is
followed by the radiative and IC decay to the ground state. nlj indicates the
capture orbital.
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Nbound 0 1 2

nlj Si→f
neec (barn·eV)

4s1/2 6.576× 10−18 5.939× 10−18 5.286× 10−18

4p1/2 1.526× 10−17 1.352× 10−17 1.216× 10−17

4p3/2 2.947× 10−17 2.632× 10−17 2.375× 10−17

5s1/2 2.391× 10−18 2.311× 10−18 2.171× 10−18

5p1/2 7.528× 10−18 7.232× 10−18 6.964× 10−18

5p3/2 1.492× 10−17 1.436× 10−17 1.383× 10−17

Table 5.10: Two step resonance strengths Si→f
neec for 99Tc with different ionic configurations

involving E3 nuclear transitions (as illustrated in Fig. 5.1). NEEC is followed
by the radiative and IC decay to the ground state. nlj indicates the capture
orbital.

Nbound 0 1 2

nlj Si→f
neec (barn·eV)

3s1/2 3.063× 10−20 2.565× 10−20 2.169× 10−20

3p1/2 9.559× 10−22 8.366× 10−22 7.318× 10−22

3p3/2 9.579× 10−19 7.889× 10−19 6.386× 10−19

4s1/2 1.172× 10−20 1.005× 10−20 8.692× 10−21

4p1/2 4.689× 10−22 4.150× 10−22 3.663× 10−22

4p3/2 3.116× 10−19 2.648× 10−19 2.211× 10−19

5s1/2 6.002× 10−21 5.171× 10−21 4.487× 10−21

5p1/2 2.627× 10−22 2.325× 10−22 2.051× 10−22

5p3/2 1.499× 10−19 1.283× 10−19 1.078× 10−19

Table 5.11: Resonance strengths Si→f
neec for 121Sn with different ionic configurations involv-

ing M4 nuclear transitions (as illustrated in Fig. 5.1). NEEC is followed by
the radiative and IC decay to the ground state. nlj indicates the capture
orbital.
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Nbound 0 1 2

nlj Si→f
neec (barn·eV)

2s1/2 1.388× 10−7 1.249× 10−7 1.217× 10−7

2p1/2 1.832× 10−6 1.725× 10−6 1.605× 10−6

2p3/2 3.190× 10−6 2.951× 10−6 2.735× 10−6

3s1/2 3.771× 10−8 3.406× 10−8 3.284× 10−8

3p1/2 6.210× 10−7 5.825× 10−7 5.406× 10−7

3p3/2 1.068× 10−6 9.992× 10−7 9.232× 10−7

4s1/2 1.545× 10−8 1.396× 10−8 1.339× 10−8

4p1/2 2.747× 10−7 2.569× 10−7 2.378× 10−7

4p3/2 4.734× 10−7 4.415× 10−7 4.069× 10−7

5s1/2 7.806× 10−9 7.049× 10−9 6.754× 10−9

5p1/2 1.428× 10−7 1.333× 10−7 1.233× 10−7

5p3/2 2.468× 10−7 2.298× 10−7 2.116× 10−7

Table 5.12: Two step resonance strengths Si→f
neec for 124Sb with different ionic configura-

tions involving E1 nuclear transitions (as illustrated in Fig. 5.1). NEEC is
followed by the radiative and IC decay to the ground state. nlj indicates the
capture orbital.

Nbound 0 1 2

nlj Sneec (barn·eV)

2s1/2 1.318× 10−5 1.228× 10−5 1.138× 10−5

2p1/2 1.721× 10−5 1.483× 10−5 1.270× 10−5

2p3/2 4.233× 10−6 3.711× 10−6 3.199× 10−6

3s1/2 4.266× 10−6 4.149× 10−6 4.033× 10−6

3p1/2 2.153× 10−6 1.978× 10−6 1.801× 10−6

3p3/2 4.795× 10−7 4.431× 10−7 4.046× 10−7

4s1/2 2.688× 10−6 2.598× 10−6 2.513× 10−6

4p1/2 7.577× 10−7 7.003× 10−7 6.422× 10−7

4p3/2 1.550× 10−7 1.448× 10−7 1.340× 10−7

5s1/2 1.789× 10−6 1.713× 10−6 1.643× 10−6

5p1/2 3.591× 10−7 3.327× 10−7 3.059× 10−7

5p3/2 7.071× 10−8 6.637× 10−8 6.174× 10−8

Table 5.13: Two step resonance strengths Si→f
neec for 152Eu with different ionic configura-

tions involving M1 nuclear transitions (as illustrated in Fig. 5.1). NEEC is
followed by the radiative and IC decay to the ground state. nlj indicates the
capture orbital.
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5.4 Total NEEC reaction rates

The three main ingredients for the final NEEC reaction rate calculation are prepared:
the NEEC resonance strength Sneec, the charge state distribution of ions in the plasma,
and the resonant electron flux φe(Ed). The charge distribution of ions is computed in
Sec. 5.2. The resonance strength is calculated for NEEC followed by radiative and IC
decay to the ground state. The calculated resonance strengths and the estimation used
for the low charge cases have been discussed in Sec. 5.3. Finally, the resonant electron
flux is evaluated by integrating the Fermi-Dirac distribution given by Eq. (5.2). The
resonant electron fluxes in the plasma Composition 1 at T1 and T2 for 152Eu are shown
in Table. 5.14.

nlj Ed (keV) Sneec (barn·eV) Φres
1 (1/m2/s/eV) Φres

2 (1/m2/s/eV)

2s1/2 5.959 1.138× 10−5 7.902× 1035 1.705× 1035

2p1/2 6.109 1.270× 10−5 7.952× 1035 1.740× 1035

2p3/2 6.840 3.199× 10−6 8.132× 1035 1.903× 1035

3s1/2 13.705 4.033× 10−6 6.886× 1035 3.057× 1035

3p1/2 13.746 1.801× 10−6 6.871× 1035 3.062× 1035

3p3/2 13.964 4.046× 10−7 6.791× 1035 3.089× 1035

4s1/2 16.369 2.513× 10−6 5.870× 1035 3.351× 1035

4p1/2 16.386 6.422× 10−7 5.863× 1035 3.353× 1035

4p3/2 16.477 1.340× 10−7 5.828× 1035 3.362× 1035

5s1/2 17.585 1.643× 10−6 5.404× 1035 3.362× 1035

5p1/2 17.594 3.059× 10−7 5.401× 1035 3.364× 1035

5p3/2 17.640 6.174× 10−8 5.383× 1035 3.467× 1035

Table 5.14: Resonance strength Sneec for 152Eu with two bound electrons (i.e., He-like
ionic configuration) involving M1 nuclear transitions (as illustrated in Fig.
5.1). Ed is the energy of the free electron at the resonance, nlj , the capture
orbital, Φres

1 and Φres
2 are the resonant electron fluxes at T1 and T2 with

Composition 1, respectively.

For calculating the reaction rates λneec, we have to put the resonance strength and
resonant electron flux together and then sum over possible charge states and capture
channels. However, taking all possible charge states and capture channels into account
is not realistic and time-consuming. Therefore, we need to introduce an atomic "cut-off"
level to calculate λneec efficiently.
As discussed in Sec. 5.3, the resonant strength decreases for increasingly less bound

capture shells. For instance, the resonance strength for capture into 2s1/2 is higher than
that for capture into 5s1/2 by a factor of 10 in Table 5.14. Therefore, it is reasonable
to consider the resonance strength up to O-shell (n = 5), since the resulting uncertainty
will be on the level of 10%.
In the next step, we examine if this cut-off is suitable for the electron flux or not. The
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electron flux φe(E) is calculated by Eq. (5.2) which is close to a Maxwell-Boltzmann
distribution with a peak at around E ∼ kBT . If electron energies are distributed before
the peak, i.e., E < kBT , the electron flux increases as the electron energy increases.
On the other hand, if electron energies are distributed after the peak, i.e., E > kBT ,
the electron flux decreases as the electron energy increases. We have considered two
different temperatures T1 and T2, the corresponding thermal energies are kBT1 ≈ 8 keV
and kBT2 ≈ 30 keV, respectively. The resonant energy Ed decreases for the considered
bound capture shells in Table 5.14. First, we consider the low temperature case, T1. The
electron flux increases for first three shells (Ed < kBT1) but later, it starts to decrease
for the rest (Ed > kBT1). Indeed, the cut-off level is valid at T1. Then, we consider
the resonant flux at T2. From Table 5.14, we see that the electron flux increases for
less bound capture shells since Ed < kBT2. However, the resonant electron flux for
capture into 5s1/2 is higher than that for capture into 2s1/2 only by a factor of 2, i.e.,
the resonant electron fluxes at two different temperatures are still in the same order of
magnitude. If the resonance strength decreases faster than the electron flux, the atomic
cut-off is still applicable. The results are presented for s and p orbitals in Table 5.14,
but the net reaction rate λneec includes all possible orbitals from n = 1 to n = 5. Energy
levels of the given isomers are always of the order of (1 ∼ 10) keV. This will result in
approximately the same order of the Ed values for the rest of isomers and we assume
that similar arguments can be applied for the other isomers. Consequently, we can safely
choose 5g9/2 as our atomic cut-off level for calculating λneec.
Plugging the calculated charge state distribution, NEEC rates and electron flux to-

gether, we eventually obtain the net reaction rate in the plasma. The obtained results
are summarised in Table 5.15.

λneec (1/s)

Plasma conditions T1, C1 T1, C2 T2, C1 T2, C2

58Co 1.978× 10 3.371× 10 3.069× 10 5.292× 10
99Tc 5.034× 10−9 8.468× 10−9 7.167× 10−10 1.237× 10−9

121Sn 8.728× 10−11 1.477× 10−10 1.955× 10−11 3.303× 10−11

124Sb 2.393× 102 4.044× 102 2.983× 102 5.128× 102

152Eu 2.044× 103 3.124× 103 9.176× 102 1.576× 103

Table 5.15: The net NEEC reaction rates in the plasma for the selected isomers. T1,
T2 denote the plasma temperature conditions and C1, C2 denote the plasma
Composition 1 and 2.

The reaction rates of 99Tc and 121Sn are almost ten orders of magnitude lower than
those of 58Co, 124Sb and 152Eu. This is reasonable, since the considered electromagnetic
transitions for 99Tc and 121Sn are E3&M4, and are E1,E2&M1 for the rest of the
isomers. The transition rate decreases significantly with the increasing multipolarity
L. The reaction rates of 124Sb and 152Eu show the highest values among ones from all
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selected candidates.
Now we compare the reaction rates for a given isomer. If the Composition is fixed, the

reaction rate is higher at the higher temperature T2. Following the argument discussed
in Sec. 5.3, the higher temperature condition results in higher charge states, which leads
to an increase of effective charge, binding energy and hence the resonance strength. Since
the reaction rate is proportional to the resonance strength, the reaction rate increases.
If the temperature is fixed, the reaction rate is higher in the plasma Composition 2 than

that in Composition 1. In principle, this can also be explained by the same argument,
however, the charge state distributions are not distinctive between two Compositions (see
Tables from 5.4 to 5.8). We know that the electron density is calculated by Eq. (5.9)
and the plasma Compositions 1 and 2 have different electron densities. For this reason,
we suspect that the electron density plays a major role here.

Isomer τneec (s) τm (s) Decay channel

58Co ≈ 10−2 ≈ 4.8× 103 γ(100%)
99Tc ≈ 109 ≈ 3.8× 103 γ(99.9963%), β−(0.0037%)
121Sn ≈ 1010 ≈ 2.0× 109 γ(77.6%), β−(22.4%)
124Sb ≈ 10−3 ≈ 1.3× 102 γ(75%), β−(25%)
152Eu ≈ 10−4 ≈ 4.8× 103 EC+β+(27%), β−(73%)

Table 5.16: Comparison of the half-lives and NEEC time scales for the test isomers. The
NEEC time scales are estimated by taking the inverse of averaged λneec from
Table 5.15. The half-lives of isomers are taken from Ref. [67]. EC denotes the
electron capture, γ, the gamma-decay, and β, the beta-decay, respectively.

Finally, we compare the obtained NEEC time scale with the relevant isomeric weak and
electromagnetic decay times in Table 5.16. Our numerical results show that the NEEC
time scales are several orders of magnitude faster than the gamma and beta decay times
for 58Co, 124Sb and 152Eu. This means that isomers would rather decay by NEEC than
by beta- or gamma-decays. NEEC can efficiently depopulate isomeric states under s-
process nucleosynthesis conditions. Possibly, the lifetime of the isomer is shortened via
NEEC. We conclude that NEEC should be considered as a relevant isomer depletion
channel in astrophysical plasmas.
It is probable that in s-process nucleosynthesis scenarios, the decay chain of the nu-

clei might be influenced by the decay of the isomer via NEEC; the Maxwell-Boltzmann
distribution of the nuclei can be reached even faster, because of the shortened isomeric
lifetime via NEEC.
However, in order to examine the last point we need to set up a set of rate equations

including the corresponding rates. Then we can keep track of nuclear populations in time
and see if the decay via NEEC plays an important role. This calls for further research.

60



Summary and Outlook

In this thesis, we have theoretically investigated the efficiency of NEEC to depopulate
isomeric states under the s-process conditions. Nuclear isomers are often not thermalised
with the rest of the nuclear excited states in astrophysical environments and must be
treated as additional nuclear species in the nucleosynthesis nuclear reaction networks.
The NEEC depletion mechanism has received little attention so far, partly because un-
der LTE assumptions, the exact excitation and decay mechanisms are not considered
separately. However, our first qualitative estimates show that in the case of NEEC, the
inverse process is often forbidden, rendering NEEC reaction rates for the depletion of
isomers relevant.
We have calculated NEEC reaction rates under the s-process conditions for a selec-

tion of isomers with astrophysical relevance, namely 58mCo, 99mTc, 121mSn, 124mSb, and
152mEu. The calculation is divided into three parts. First, we have obtained the charge
state distributions of the ions of interest in the plasma under stellar conditions by solving
numerically the Saha equation. This is performed for two plasma compositions and two
temperature values relevant for s-process nucleosynthesis. As a second step, we have
calculated the NEEC rates for recombination into several vacant orbitals of the ions in
the plasma.
To this end, we have computed relativistic bound and continuum electronic wave func-

tions using the multi-configurational Dirac Fock method implemented in the GRASP92
code and Coulomb-Dirac routines, respectively. Finally, as a third step the NEEC reso-
nance strengths were integrated over the electron flux in the plasma to obtain the actual
reaction rates for the specific astrophysical conditions considered.
We have compared the obtained NEEC rates with the relevant isomeric weak and

electromagnetic decay rates that determine the thermalisation time-scale for the isomeric
state. Our numerical results show that the NEEC reaction rates for 58mCo, 124mSb, and
152mEu are faster than beta and gamma decay rates of isomeric states. This confirms
that NEEC can be an efficient depletion channel for isomeric states under s-process
nucleosynthesis conditions and should be investigated in more detail. As an outlook,
more detailed calculations for a larger list of case study isomers should be performed.
Our work can also be made the subject of further refinements. Presently used approx-

imations could be improved. For instance, for the lower plasma temperature the NEEC
rates for recombination into ions with charges lower than He-like were approximated from
the corresponding rates for capture into He-like ions. We expect this approximation to
produce uncertainties on the level of 10%. More detailed calculations for the actual con-
ditions in the plasma could be performed. On the other hand, one could attempt to
include the expected degeneracy effects due to the plasma environment for the bound
and continuum electronic wave functions, which are in the present work not including
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any plasma effects.
Finally, a further direction could include a self-consistently calculation of the thermali-

sation of the isomeric states taking into account NEEC together with the partially closed
IC channels and purely electronic processes such as collisional and photo-ionisation. At
present, the discussion concerning thermalisation of the isomeric states was only based
on qualitative arguments about NEEC, IC and collisional ionisation. The thermalisation
time-scale could be however deduced quantitatively by taking into account all relevant
atomic and nuclear processes.
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